
 

How Multicore GC Works

Meet our te gotcoolerold frenBonjour Ocaml is finallyCamel
multicore I

OCaml came Ocaml stood the
into existance test of time as a
in 1996 stable and performantolder than me
what FP language

The challengeIForthelongesty
Building a multicore

Alas OCaml time OCaml capable Garbagedidn't support didn't support collector GC that's
multicore native parallelism backwards compatible

It and performant



In came a group
They set on thisof hackers who

took up this
formidable task

long and arduous

journey of building Let'sgo
a multicore GC

It finally got Let's take a Multicore logo
deep dive on

merged and released

as OCaml 5.0 in the multicore
GCDecember 2022



Space time Trade off

operating a GC is essentially
time choosing a trade off b w

space and time

x is the theoretical min
x l.sn amount of space required
space As the available space

increases the program
gets faster

Of course one doesn't 1.82 is usually
have the luxury of the sweet spot
infinite space

depends on a multitude of factors



But first things first how are Ocamlvalues represented in the memory

MEMORY REPRESENTATION OF VALUES

Ocaml follows uniform memory
layout the layout is
consistent regardless of typeblocks of memory

values are either

integers unboxed or value
pointers boxed

Boxed values have Integer
Pointer

meta data attached
to It

I 0



Let's take a closer look at the constituents of a block

s.IE
ii

i
length of
the block

tracks state determines whether
during mark the GC should
sweep scan the value



GENERATIONAL HYPOTHESIS

change
the

orientation

t

7

youngblocks tend
to die young

small minor old blocks tend to stay longer
heap Live blocks from minor heap
Young are promoted to major heap

largemajor generation

heap MAJOR HEAP mark andsweepcollection
old generation MINOR HEAP copying collection



KEY TAKEAWAYSI

Allocations are fast 80 of allocations happen in minor heap

Pause times are small single digit ms pause times at max

GC memory is not
exhausted

survival rate is low The survival rate of allocated objects
is roughly 10 on the minor heap

Meaning most allocated objects are

collected Small objects die young

To speedup your program Allocate as little as possible

LET'SGO



MINOR HEAP

Allocation is collection is
The minor constant time non incremental
heap is and fast entire collectionone single
blob of memory happens in one go

Major heap
Live objects from
minor heap are

promoted to the

major heap

Minor heap



Allocation Note all the

pointers have
a caml young
prefix They've
dropped for

end brievity
Ptr

start starting address of the minor heap

end finishing address of
the minor heap

ptr current location of the allocation pointer

limit variable to define the end of minor heap

making
limit end triggers a collection



Initial state

start end
limit ptr
Allocate two blocks

the pointer is
bumped by two
addresses

start pfr end
limit

The minor heap is full

minor collection
is triggered

start end

limit
pfr



MINOR COLLECTION

The collector traces Includes remembered set
retains pointers fromlive objects starting
major heap to minor heapfrom a set of roots

Geroot All reachable values from
a root are traced via
a breadth first search

The live values are

copied to the major
heap promotion

Garbage values are untouched
and the entire heap is
cleared at the end of
a minor cycle



In tomes multicore Domain is the basic unit

of parallelism
The major heap is shared
between domains

Shared
major Every domain has its

heap own minor heap

A domain allocates in

its own minor heap
or the major heap

Domaino Domain 1 Domain 2 Minor collection is

stop the world and is

Domain local performed by all the

minor heaps domains parallely



Stop the world Parallel Minor Collection

Parallel promotion
All domains promote

Domaino live objects in parallel
Domaino sends Two domains attempting

interrupt to promote the same

to other object is serialized
Domain 1 domains

to trigger
static work sharing

minor The number of roofs
Domain 2 collection to scan is evenly

divided amongst the
domains One domain
could end up with

Domain more work



MAJOR HEAP

Mark and sweep Marking determines allocations still in use
Sweeping collects unused allocations

Non moving Objects are in the same
memory address

Incremental Program stops
in small slices for low pausetimes

Mutator I Mark Sweep

Idle mark roots mark main sweep

Major cycle



Marking major heap

Consider a

sequential program
in OCaml 5

During the Mark
GC Colours marking phase stack

all live objects
MARKED are marked

and put intoUNMARKED a mark

GARBAGE
stack

FREE



Marked
object

the objects reachable

from a live object are

II also marked and

pushed into a mark stack

Reachable nodes

Items from mark stack

are popped and all its

children are marked

This process is repeated

until the mark stack

is empty



Sweeping set of objects affected by
marking and sweeping is

disjoint No synchronization is

necessary

MARKING
Sweeping pass
traverses the whole Unmarked Marked

heap incrementally SWEEPING
and flips

the

meaning of
the

Garbage Free
state



Multicore Major Heap

Mutator I Mark sweep

start of End of major
major cycle cycle

The major collector's design
There's a small Stw

allows overlap of mark section at the end of
a major cysweep phase thus removing

the need for synchronization



Major heap Every domain has its own

mark stack

Marking is idempotent

okay to have the same

object on more than one

mark stack

Sweeping is disjoint

Every domain only sweeps

the memory it allocated

Mark Mark Mark Mark

Stack Stack Stark Stanky


