
From OCaml 4 to 5 and from Parmap to Effects:
A legacy code transition story

Nat Mote & Nathan Taylor
September 2025

Part 1 OCaml 4 to 5

What is Semgrep?

● Static analysis and code search tool written mostly in OCaml
● Parses code and patterns into Abstract Syntax Trees ASTs and matches patterns

against code
● Taint analysis built atop pattern matching helps identify additional issues,

particularly security issues.

Why Upgrade to OCaml 5?

● Multicore (see part 2!
● Algebraic effects (backbone of eio)
● Fixes for Windows
● Risk of falling behind the ecosystem

○ May not be able to use latest package versions
● BUT We needed to upgrade without exposing our users to significant negative

effects!

Background on OCaml Runtime Changes

● Introducing shared-memory
parallelism (multicore) required
re-architecting the garbage
collector and memory allocator

● Maintainers ran benchmarks with
positive results

Retrofitting parallelism onto OCaml
Sivaramakrishnan et al.)

https://dl.acm.org/doi/10.1145/3408995

Initial Attempt in 2023

https://github.com/semgrep/semgrep/pull/8194
https://github.com/semgrep/semgrep/pull/8194
https://github.com/semgrep/semgrep/pull/8940
https://github.com/semgrep/semgrep/pull/8940

What Went Wrong?

● OCaml 5.0 and 5.1 donʼt have compaction! Though this turned out not to be the
issue

● Infer ran into this
● We assumed the lack of compaction was causing our problems too
● Decided to wait for 5.2 which has compaction (though must be explicitly called)

https://discuss.ocaml.org/t/ocaml-5-gc-releasing-memory-back-to-the-os/11293

Second Attempt

● Tried with 5.2
● Saw the same issues (unsurprising,

since compaction has to be called
explicitly)

● Tried adding a few calls to Gc.compact
explicitly

● Read a bunch of runtime code
● Read about (and misunderstood) the

new allocation code
● Looked into fragmentation related to the

use of malloc
● Spent some time with Memtrace

○ At least made a few memory
optimizations.

https://github.com/janestreet/memtrace

Memtrace Investigation

● Directly compared memtrace results on an interfile analysis of Juice Shop
● Shows increase is at least in part due to major GC behavior changes
● Note difference in scale

OCaml 4 with no GC tuning OCaml 5 with no GC tuning

https://github.com/juice-shop/juice-shop

Tuning Garbage Collector

OCaml 4 with no GC tuning OCaml 5 with GC tuning

● Started experimenting with space_overhead
● Dropped it to 40 from default of 120 and got good spacetime results!
● But need to see if we also get good results on Resident Set Size RSS.

Measuring RSS

Generalizing to Other Repositories

● Experimented on Blaze Persistence and found that we needed
space_overhead=20.

● But that slowed down smaller repositories too much!
● Ran with automated benchmarks and found some even larger repos that needed

an even smaller value!
● space_overhead=15 seemed to work.

https://github.com/Blazebit/blaze-persistence

Dynamic GC Tuning

● No need for a single static value for
space_overhead!

● Utility to adjust it based on heap size
● Tried it with the values below and it worked well
● Now open source
● Only used for interfile. Single-file scans do fine

with a single static value.

https://github.com/semgrep/dynamic-gc

Validation and rollout

● Did a/b testing with dry runs alongside real customer scans on our infrastructure
○ Showed no significant changes between OCaml 4 and OCaml 5 with GC tuning!

● Rolled out with a plan for a quick rollback if needed.
● Turned out entirely uneventful!
● Semgrep is now fully on OCaml 5 and we have begun to make use of some new

features!

Upcoming Runtime Improvements

● I reported an issue on the OCaml repository and joined an OCaml runtime meeting
to discuss my experiences.

● The maintainers identified two pull requests which they believe may make our GC
tuning unnecessary:
○ https://github.com/ocaml/ocaml/pull/13580
○ https://github.com/ocaml/ocaml/pull/13736

● Both are now merged into mainline OCaml
● Additional fixes are available in OxCaml

https://github.com/ocaml/ocaml/issues/13868
https://github.com/ocaml/ocaml/pull/13580
https://github.com/ocaml/ocaml/pull/13736
https://github.com/oxcaml/oxcaml

Part 2 Multicore

Parsing

Parsing "Typechecking"

Parsing "Typechecking" Analysis passes

fo
rk
()

wa
it
()

fork() wait()

wait()

fork()

● ✅ No shared memory, so
we are free of data races

● ✅ Programming model
like calling a pure function

● 🤔 Each child has its own
address space - copying
and compacting the heap
leads to linear memory
overhead

Our goal: Migrate incrementally to OCaml 5's
newly-supported shared memory parallelism

semgrep scan computation

fo
rk
()

fork()

fork()

semgrep scan computation

semgrep scan computation

semgrep scan computation
(with blocking IO!Eio

scheduler

fo
rk
()

fork()

fork()

Eio
scheduler

semgrep scan computation
(with blocking IO!Eio

scheduler

Eio.run

semgrep scan computation
(with blocking IO!

semgrep scan computation
(with blocking IO!Eio

scheduler

ei
o
su
bm
it

eio submit

eio submit

Eio
scheduler

semgrep scan computation
(with blocking IO!Eio

scheduler

Eio.run

semgrep scan computation
(with blocking IO!

semgrep scan computation

async IO fiber

Eio
scheduler timer fiber

…

…

Eio.run

ei
o
su
bm
it

eio submit

eio submit

Tracking down sources of mutable state

Tracking down sources of mutable state

Dynamic analysis
Workflow: "run the program with a race
detector; observe and fix races; repeat!"

● ✅ Sound! A reported race is real.
● 🤔 Incomplete: will miss infrequently

executed races, and initially very noisy
● 🤔 Finds the symptom, not the root cause
● 🤔 Operates at the OS thread level, so will

not find inter-fiber races, nor non memory
data races (e.g. with temp files)

Tracking down sources of mutable state

Static analysis
Workflow: "scan the program with a static
analyzer and an specification describing
what a data race might be"

● ✅ Doesn't require running the code!
● 🤔 Overapproximates: may flag a

violation even if in practice it is
impossible to trigger

● 🤔 Writing a useful and correct
specification can be really difficult
○ Can you think of ways my

specification is poor? I can think
of at least three…)

Example: what do you think of "Never shall we have a
'a ref value within the body of Domain.spawn"?

Data representation of mutable state

Data representation of mutable state

● ✅The right abstraction given we
are using Eio for concurrency!

● 🤔Heavyweight implementation
(stored in a per-fiber hash table)

● 🤔Non-obvious semantics: FLS
values inherited when a fiber
forks, unless the fiber is forked
across domains!

Data representation of mutable state

● ✅ Cheap to access
● 🤔 Fatal flaw: Racey if two fibers

on the same domain mutate the
same DLS value…!

Eio.run

Eio
scheduler async IO

semgrep scan
computation

Eio
scheduler another semgrep

scan computation

semgrep scan
computation ❌

✅

Data representation of mutable state

ei
o
su
bm
it

eio submit

Conclusion

● Memory usage for large parallel
scans reduced from

(baseline * number of CPUs)
to

(baseline + epsilon)!
● Scan times improved by 1015%!
● All thanks to the hard work of the

OCaml and Multicore OCaml
project maintainers!

Questions

