From OCaml 4 to 5 and from Parmap to Effects:
A legacy code transition story

Nat Mote & Nathan Taylor
September 2025

000

Part1: OCaml4to5

What is Semgrep?

Static analysis and code search tool written mostly in OCaml
Parses code and patterns into Abstract Syntax Trees (ASTs) and matches patterns
against code

Taint analysis built atop pattern matching helps identify additional issues,
particularly security issues.

fules:
- 1d:: test-rule
languages:
- ocaml
severity: ERROR
message: found match
pattern: print_endline("...")

1- tet: £ Xi=

2 | print_endline(x);

3 print_endline("this is
a literal string")

Why Upgrade to OCaml 5?

Multicore (see part 2)!
Algebraic effects (backbone of eio)
Fixes for Windows
Risk of falling behind the ecosystem
o May not be able to use latest package versions
e BUT: We needed to upgrade without exposing our users to significant negative

effects!

(21) ayi™y0"suwied

() sdo~souanbes

(912) zdwoonas

(%) IM["Xnpas~soauaweyd

(1'zv) opijo awed

(19°}) sdo~souanbas
(28°2) zdwoonal
IMTXNpaJ”soausWeyo

(¥2°zz2) Alweoo yuaw (22€9) Alwedo yuaw
(65°€) JeAw M BuLpeaiyy (%) seaw M~ Buu~peaiyy
(16°2) Hosxainb (8g) Hosyoinb

(€) Zxnpaiyonjuuey

(g) xnpaiyonyuuey

(zy1) ssanfieuiq

(6¥2) aleos jpdo

(982) Jasied-jbs uyuaw
(¥) ypaqe-1auRX-pueINp
() ot

(869) JaAsAs 1iyuaw
(999) apnoajonusy

(982) azaanbs'jpdo

(g) Apoqu

(e) ceysey

() uigunp-uosuag]

(g) uoywooryBiuIL
(p) Jokeynw-anieu

(22'16) ZxnpaiyonuUey
(1°¥6) xnpaiyonyuuey
(zv°z1) seankieuq

(¥'1) oleos'jpdo

(8°G) Jos.ted-|bs yuaw
(1°0) yeqge-JaUIRY-pUBIND
@y o

(8°p8) Janshs ayusw
(90°t¥) @pnospnuy

(21°21) @ze@nbs jpdo
(2¢72) Apoqu

(6°2) ceasey

(2¥°2) wiqInp-uosuiAg)
(£9°22) Woywoor ybiuIw
(2¢°t) Joheynuw-aneu

Benchmarks

(vg'1) dujes

(2'21) weans [Bul"peaiy)
(1°2t) €opoajonuy

(92°6) Hnw ™ xuyew

(£2) oxa ou™ gy

(v9'81) ssaidwooap

() weans™wmi Buli~peaiyy
(L) €apnoajonuy

(92) ynwi~xurew

() oxa~ou™ay

(8p) ssaudwosap

(62'9) PPQ (£1) ppg

(60°21) ddgb-yixal () ddzB-yixa|
(90°0%) groIqiepUBW (€) g01q/0puEWw
(2£°0) dwnpK~uoslok “ (¢) dwnpA~uosloA

) uoisodwooap N|
) Zwioulenoads

(19) uonsodwiooap™n|
() zwioujesoads
(011) xepioeiqypdo
(zge) gersey

(zz'v) oppe|q jpdo
(v9°5) omisey

n
= - (65°61) Zxnpaixabal = = (06) Zxnpaixabos
Mm 5 — (25°9) lleussempoy s m 5 eusIEM POy
=] — = w01
S& - (9%°2) uomsoduwiooap-ib ——] S & (g) uowsodwooap-ib
— — —— (96') = — — (161) 1w
— (69°0) GSUbIPId = (€1) gsubipid
@ 8 = 2 2 @ N e @ 9 % o 9
v ¥ « « S o© - ©6 6 S o o

(a) Normalized runtime. Baseline is Stock OCaml whose running time in seconds is given in parenthesis.

QW] pazZIfeuLioN 9215 deaH Xe| pazijeutioN

ired

require
Maintainers ran benchmarks with

Introducing shared-memory
re-architecting the garbage
collector and memory allocator
positive results

parallelism (multicore)

Background on OCaml Runtime Changes

Benchmarks

(b) Normalized maximum major heap size. Baseline is Stock OCaml whose maximum major heap size in MB

is given in parenthesis.

(Sivaramakrishnan et al.)

Retrofitting parallelism onto OCaml

https://dl.acm.org/doi/10.1145/3408995

Initial Attemptin 2023
feat!: OCaml 5.0 #8194

FMErged® aryx merged 56 commits into develop from ocaml5.0 (LJon Oct 4, 2023

G Conversation 33 -0- Commits 56) Checks o Fild ‘ aryx commented on Sep 29, 2023

» | ALLCHECKSAREPASSINGIY

& brandonspark commented on Jun 30, 2023 - edited ~
. 9 o
What:

This PR updates our version of OCaml to 5.0.

Revert to OCaml 4 #8940

FiMergedd aryx merged 2 commits into develop from iago/revert-8194 L';] on Oct 10, 2023

L) Conversation 20 - Commits 2 [F) Checks o Files changed 20

../g) lagoAbal commented on Oct 9, 2023 Member

OCaml 5 has serious regressions regarding memory usage, running p/default-v2 on 46 repos from stress-test-monorepo we
observed a 45% average increase in memory usage, in some cases Semgrep used almost twice as much memory as with
OCaml 4.

https://github.com/semgrep/semgrep/pull/8194
https://github.com/semgrep/semgrep/pull/8194
https://github.com/semgrep/semgrep/pull/8940
https://github.com/semgrep/semgrep/pull/8940

What Went Wrong?

e OCaml 5.0 and 5.1 don't have compaction! Though this turned out not to be the
issue

e Infer ran into this
We assumed the lack of compaction was causing our problems too

e Decided to wait for 5.2 which has compaction (though must be explicitly called)

Moving to OCaml 5 we see a significant increase in memory pressure for our workload due to
lack of compaction (=~ not releasing memory back to the OS).

https://discuss.ocaml.org/t/ocaml-5-gc-releasing-memory-back-to-the-os/11293

Second Attempt

Tried with 5.2

Saw the same issues (unsurprising,
since compaction has to be called
explicitly)

Tried adding a few calls to Gc.compact
explicitly

Read a bunch of runtime code

Read about (and misunderstood) the
new allocation code

Looked into fragmentation related to the
use of malloc

Spent some time with Memtrace
o Atleast made a few memory
optimizations.

r2c-argo (bot) commented on Aug 22, 2024

semgrep-compare-github-ppOw4 results

Ran benchmark on 38 repositories
The exit code differs for 18 repos
The number of files checked differs for 18 repos
The number of findings differs for 18 repos
Whole benchmark is 19.3% faster
Relative speed improvement is 1.12 on average
¢ 18% of scans are significantly faster
Relative memory improvement is 0.70 on average

* 97% of scans use significantly more memory

®

https://github.com/janestreet/memtrace

Memtrace Investigation

e Directly compared memtrace results on an interfile analysis of Juice Shop
e Shows increase is at least in part due to major GC behavior changes
e Note difference in scale

400M 550M
500M
350M 450M
300M 400M
250M 350M
300M
200M 250M
150M 200M
100M § / 150M H
100M §-
2R 50.0M |-
0B |] |] |] | | 0B | | | |]]] |
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800
Elapsed time (s) v Elapsed time (s) v

OCaml 4 with no GC tuning OCaml 5 with no GC tuning

https://github.com/juice-shop/juice-shop

Tuning Garbage Collector

e Started experimenting with space_overhead

e Dropped itto 40 from default of 120 and got good spacetime results!
e But need to see if we also get good results on Resident Set Size (RSS).

|

|] | | | |

|

400M
300M —
350M
250M 200M
200M 150M U
150M
100M }
100M § ‘
0 | | | | | | | |
B0 100 200 300 400 500 600 700 800 900 0130

Elapsed time (s) v

OCaml 4 with no GC tuning

100

200 300 400 500 600 700

Elapsed time (s) v

OCaml 5 with GC tuning

800 900

Measuring RSS

OCaml 4 OCaml 5 with space_overhead=40
(=3 =3
(=N =2
© ©
(=3 =3
(=N o
wn w
(=3 o
o S -
- <
))
= o = o
o & o &
& &
(=3 =3
(=B S
o~ o~
(=3 o
2 27
© - o -
T T T T T T T T T T
0 200 400 600 800 0 200 400 600 800

time (s) time (s)

Generalizing to Other Repositories

e Experimented on Blaze Persistence and found that we needed
space_overhead=20.

e But that slowed down smaller repositories too much!
Ran with automated benchmarks and found some even larger repos that needed
an even smaller value!

e space_overhead=15 seemed to work.

https://github.com/Blazebit/blaze-persistence

Dynamic GC Tuning

No need for a single static value for
space_overhead!

Utility to adjust it based on heap size

Tried it with the values below and it worked well
Now open source

Only used for interfile. Single-file scans do fine
with a single static value.

H
o

space_overhead
N w
o o

(if USys.ocaml_release.major = 5 then

DynamicGc. (

setup_dynamic_tuning
{
min_space_overhead 15
max_space_overhead = 40;
heap_start_worrying_mb = 2_048;
heap_really_worry_mb = 8_192;
r1);

Dynamic Tuning Example

2 3
Heap Size (GB)

https://github.com/semgrep/dynamic-gc

Validation and rollout

e Did a/b testing with dry runs alongside real customer scans on our infrastructure
o Showed no significant changes between OCaml 4 and OCaml 5 with GC tuning!

e Rolled out with a plan for a quick rollback if needed.

e Turned out entirely uneventful!

e Semgrep is now fully on OCaml 5 and we have begun to make use of some new

features!

Upcoming Runtime Improvements

e | reported an issue on the OCaml repository and joined an OCaml runtime meeting

to discuss my experiences.
e The maintainers identified two pull requests which they believe may make our GC
tuning unnecessary:
o https://github.com/ocaml/ocaml/pull/13580
o https://github.com/ocaml/ocaml/pull/13736
e Both are now merged into mainline OCaml
Additional fixes are available in OxCaml

https://github.com/ocaml/ocaml/issues/13868
https://github.com/ocaml/ocaml/pull/13580
https://github.com/ocaml/ocaml/pull/13736
https://github.com/oxcaml/oxcaml

000

Part 2: Multicore

/\

I—P l—>l ! !

\/

N J
Y

Parsing

SR
N

- J
<

Parsing

/\
\/

- J
<

"Typechecking"

tV\

/\

I—P I—bl

\/

N J
Y

Parsing

\/\

\
/

N J
Y

/ ,,,\\

"Typechecking"

/
\

N

rV\

/\/

~
Analysis passes

UL

No shared memory, so
we are free of data races

Programming model
like calling a pure function

&) Each child has its own
address space - copying
and compacting the heap
leads to linear memory
overhead

UL

VRN
]
/_1\
VRN VRN PR
i
N_v

] >

TN TN
NG N

PR
]
N_v
PR
] > I
N_v N_v N _ v
\"-\ PR
]]

N_v N _ v

Our goal: Migrate incrementally to OCaml 3's
hewly-supported shared memory parallelism

nnn

1

Buull

Nt

= CP

B uus

I

Cufu

= CPL

uus

CPU e

,-

N\

V4
N {
N \
05
~ fork () -
C -
V4 N\
Or
/r(/

N\

4

N\

4

N\

4

) semgrep scan computation

) semgrep scan computation

) semgrep scan computation

’-

A Eio
»{,\5\ scheduler
%/O
v fork ()
: > S
/’ Eio
O scheduler
\Z.\
Eio

scheduler

semgrep scan computation
(with blocking 10!)

semgrep scan computation
(with blocking 10!)

semgrep scan computation
(with blocking 10!)

il .
= CPU Eet
YT S

1l
R uul

Eio
scheduler

Eio
scheduler

Eio
scheduler

> —

semgrep scan computation
(with blocking 10!)

semgrep scan computation
(with blocking 10!)

semgrep scan computation
(with blocking 10!)

Ny
o= CPUE-

Ruudl

@

Nt

2)</ oo o
S 4 “ N Fio.run ¢ s €lio submit
= CPU et —_— [
TIT S Vg \ /o,
Ny
o~ CPl =
Uy

|

P> ’-
Eio
schedul

/- ' async 10 fiber
S
uh
OZ\ZIZ\

. semgrep scan computation
e‘r\n . timer fiber

Tracking down sources of mutable state w

Tracking down sources of

Dynamic ana|y3is Racein Parse_typescript_tree_sitter.guess_dialect
Workflow: "run the program with a race Yojson/Atdgen runtime is not threadsafe
detector; observe and fix races; repeat!" UTmp hashtable is not threadsafe
° Sound!: A reported race is real. ¢ Data races inside LWT's worker loop
e =) Incomplete: will m.ls.solnfrequently./ Parse_js is not threadsafe
executed races, and initially very noisy
° 20 Finds the Symptom not the root cause Menbhir parser we use to parse patterns; see TSan output
e (¥ Operates at the OS thread level, so will

not find inter-fiber races, nor non memory

WARNING: ThreadSanitizer: data race (pid=92842)

data races (eg Wlth temp f||eS) Write of size at | 12553a3 by thread Té (mutexes: write M@):

Tracking down sources of

Static analysis

Workflow: "scan the program with a static
analyzer and an specification describing
what a data race might be"

e |74 Doesn't require running the code!

e (¥ Overapproximates: may flag a
violation even if in practice it is
impossible to trigger

e = Writing a useful and correct
specification can be really difficult

o Can you think of ways my
specification is poor? (I can think
of at least three...)

Example: what do you think of "Never shall we have a
'a ref value within the body of bomain.spawn"?
File: bin/main.ml
fetch_and_inc r = r (Irs+81)

)
forty_two: int

fetch_and_inc forty_two

10 _ Domain.spawn(() > fetch_and_inc forty_two)
Al
12 O

1 Code Finding

bin/main.ml
rules.ref-in-domain-spawn
Found a ref in a Domain.spawn()!

10! let = Domain.spawn(fun () — fetch_and_inc forty_two) in

Data representation of @

mutable_ref = ref 42

Data representation of w

e [4The right abstraction given we
are using Eio for concurrency!

e F Heavyweight implementation
(stored in a per-fiber hash table)

e = Non-obvious semantics: FLS
values inherited when a fiber

i fam b w0 forks, unless the fiber is forked

Eio.Fiber.create_key () across domains!

mutable_ref = ref 42

Data representation of @

"4 Cheap to access

e ¥ Fatal flaw: Racey if two fibers
on the same domain mutate the
same DLS value...!

mutable_ref = ref 42

mutable_dls = Domain.DLS.create (const 42)

Data representation of mutable state

semgrep scan

f L]] .
CPU = . /‘-’ computation

Eio .
schedule‘r\-_l. async |0
uli, »
CPU et
T S

semgrep scan

,,,JJLJUL / -7 computation x
7Pl Eio .
. 2" another semgrep

T scheduler 1O .
' - scan computation

Conclusion

e Memory usage for large parallel
scans reduced from
(baseline * number of CPUSs)
to
(baseline + epsilon)!

e Scan times improved by ~10-15%!
e All thanks to the hard work of the
OCaml and Multicore OCaml

project maintainers!

Pod Memory Usage

48.00 GiB

32.00 GiB

16.00 GiB

oooB M—"

Pod Memory Usage

8.00 GiB

6.00 GiB

4.00 GiB

2.00 GiB

0.00B '
02:30 03:00 03:30 04:00

04:30

05:00

05:30

Questions

