OCaml at LexiFi
25 years of OCaml

Nicolas Ojeda Bar, nicolas.ojeda.bar@lexifi.com
FUN OCaml, September 15, 2025, Warsaw

LexiFi is a Paris-based software editor founded in 2000 specializing in the treatment of

heterogeneous financial structured products.

Its software is fully written in OCaml. Its technology is based on an algebraic DSL
allowing it to describe arbitrary contract payoffs in a generic way. This DSL allows
applying a programming language-based approach to the treatment of such contracts.

Composing Contracts:
An Adventure in Financial Engineering

Functional pearl

Simon Peyton Jones
Microsoft Research, Cambridge

simonpj@microsoft.com

Abstract

Financial and insurance contracts do not sound like promis-
ing territory for functional programming and formal seman-
tics, but in fact we have discovered that insights from pro-
gramming languages bear directly on the complex subject
of describing and valuing a large class of contracts.

Jean-Marc Eber
LexiFi Technologies, Paris
jeanmarc.eber@lexifi.com

Julian Seward
University of Glasgow
v-sewardj@microsoft.com

At this point, any red-blooded functional programmer
should start to foam at the mouth, yelling “build a com-
binator library”. And indeed, that turns out to be not only
possible, but tremendously beneficial.

The finance industry has an enormous vocabulary of jargon
for typical combinations of financial contracts (swaps, fu-
tures, caps, floors, swaptions, spreads, straddles, captions,

There is much left to do. We need to expand the set of
contract combinators to describe a wider range of contracts;
to expand the set of observables; to provide semantics for
these new combinators; to write down and prove a range of
theorems about contracts; to consider whether the notion of
a “normal form” makes sense for contracts; to build a robust
implement ation; to exploit the dramatic simplifications that
closed formulas make possible; to give a formal specification
of the evolution of a contract during its life; and to validate
all this in real financial settings. We have only just begun.

LexiFi was likely first software editor to use OCaml in an industrial setting and to

license (sell) software written in OCaml.

While an unorthodox choice of language to develop a commercial desktop
application at the time, it turned out to be extremely good one in hindsight. It has

allowed a small team of developers to punch above its weight.

LexiFi applies OCaml outside of its traditional areas of application (static analysis,

compilation, high-assurance software, etc).

Historical note: factors that tilted the scale towards OCaml at the time were use of
a standard build system (Make), the straightforward C FFI which allowed easy
interoperability, a readable, compact and open-source compiler (— easy to modify).

3/ Life Cycle Events - LexiFi Apropos 2025.062 | Licensed to: lexifi [DEV] | User: superuser_demo | Database: postgres: 7a99762bfabaddb8025ec2ffd950f689

- o x|

Autacall

Search ... (Ctrl + K} - @O0 # | File History Admin Navigation Help
£ Contracts = Filters
New Contract. E Kind - E o A "
&1 Simple European Call/Put
Calculsted Atibutes Apply fixings Manage fixings.. fons... i fiveries... Cancel pastevents... Remove pestevents.. Undo last event,
Intemal Cortract Representation
Parameters Tz
Pricing
& Aot Status Date Everttype Vaiue Asset Detais
[L Cycle Events.
i Parameters
Pricing
Books
- Product Types EURO_STOXX_50
- Reports NIKKE]_225
- Todls @ » 5
2024-09-18 | Bamer Final Bamer: EURO_STOXX_50 <= 0.6 ° EURO_STOXX_50{2023-03-18)
Future? |2024-09-18 | Bamer Final Bamer: NIKKE|_225 <= 0.6 * NIKKE]_225(2023-09-18)
Fuiure? | 20240918 | Barier Final Bamer: SP_500 <= 0.6 * SP_500(2023-09-18)
Fuiure? | 20240918 |Receives | 100 EUR coupon(2023-09-18, 2024-05-18)
Future? | 20240918 | Receives | 1000+ 1000 * min(EURO_STOXX_50(2024-05-18/2023-09... [EUR Grp(1 cetain)
Future? 20240913 |Receives | 1000 EUR "Barrer not crossed”, Grp (1.certain}
U [Fuure? 20040913 |Receives [1000 EUR "Early termination {autocal)”, Go(1.certain)
¥ Manage fixings - o X

From historical prices
fem Vaue Comment

[cose | I
. = || \

From file.

From clipboard...

Apply Cancel

>/ Runtime Environment - Lexifi Apropos 2025.06.2 | Licensed to: lexifi [DEV] | User: superuser demo | Database: postgres: 7299762bfabaddbB025ec2fd950f689 - O

Search..(Ctd+ K) | 4n =

- Contracts
¢ L New Cortract...
B Autocall
Caloulated Attributes
Manage
- Schedules
- Books
Product Types
.- Reports
= Tooks
=)~ Administration

& Runtime Environment

@990
=1 Runtime
CPU Information:

OS version:

Net CLR version:
\wieb browser version:
Assemblies:

Eloomberg Deskiop AP

7| File

History Admin

Vendor Id: Genuinelntel

Navigation ~ Help

Advanced Vectar Extensions 2 (Intel AVX2) enabled
Intel Math Kemel Library: 2024.0.0 Product 20231011 Intel(R) 64 architecture Intel(R) Advanced Vector Extensions 2 (intel(R) AVX2) enabled processors
Intel Integrated Perfommance Primitives: ippSP AVX2 (9) 202110.0 ((x275%22) 2021.10.0.670407202

Custom DLL version: v3

Microsoft Windows NT 6.2.5200.0

40.30319.42000
T
Name Version Runtime version__Locatian

Tb 4000 v4030313 € Windows'Microsoft NET Framework64\w4.0. 30313 mscoriis
apropos native 0000 V4030313 Cilsers'nojebarif proposh local\apropas_native.¢
Sysem 4000 4030313 CAWINDOW S \Wicrosoft Net assembly GAC_WSILSystemv.0_4
System Windows Fomns 4000 4030319 CAWINDOWS \Wicrosof Net ssembly\GAC_WSIL\System Window
System Drawing 4000 4030313 CAWINDOWS \Wicrosoft Net assembly\GAC_WSIL\System. Drawing
DebugTools 1009 4030313 CA\Users nojebar i \applications apropos, local\DebugTools di
System Care 4000 4030313 CAWINDOWS Microsoft Netassembly\GAC_MSIL'System Corchwe
Gma System MouseKeyHook 5710 V4030313 C\Users'nojebar i applications \aproposlocal\Gma. System Mot
Microsof Web WebView2Core 10242047 v40.30313 CAsers'njebaryrif\zppi propos | Viea ¥
System Corfiguration 4000 4030319 CAWINDOWS\Wicrost Net\assembly\GAC_WSIL\System Configu
System Xl 4000 4030313 CAWINDOWS Wicrosoft Net\sssembly\GAC_WSIL\System Xml\v4
cesd Grd 381545821040 v2050727 CA\lsers nojebar i \appiications 2propos,local Xeeed Grid di
Xceed Vaidation 121545821040 [v2.0.50727 C\lsersnojebarvri\applications ‘propos',local Xoeed Validation
Xceed Editors 251545821040 v2050727 C\Users'nojebar i applications \apropos' local\Xceed, Editors dl
System Web. Extensions 4000 4030313 CAWINDOW S Wicrosoft Net zssembly GAC_WSILSystem. Web.Es
Nicrosot Wieb WebView2 WinFams | 10242047 v4.0.30319 CAUsers\ngjebarif\ppi propos | Wieo ¥
System Web 4000 4030313 CAWINDOWS Wicrosoft Net assembly\GAC_64\System Webivd 0
System Windows Foms resources | 40.0.0 4030313 CAWINDOWS\Wicrosoft Net assembly\GAC_WSIL\System Window

BLPAP| version: 3.23.2.1

Portefeuille ~ Gestion des Evénements ~

vLexiFi

Nouveau Cumulative Autocall

Save

Denomination

* Base dates

Initial fixing date

Issue date

Final fixing date
Redemption date
Barrier period start date

Barrier period end date

Barrier type
~ Underlyings
Strike percent of initial fixing

Barrier level percent of initial
fixing

Autocall level percent of
initial fixing

Rapports et Docs ~

EUR

2023-09-18

Initial fixing date

Initial fixing date + 1 year
Issue date + 1 year

Initial fixing date

Final fixing date

Final

100.00

60.00

Global

és et Tendances

%

%

Transactions ~ Ingénierie~ Admin

1000.000

100.00 %

vLexiFi

Portefeuille ~ Gestion des Evénements~ Rapports et Docs ~ Activités et Tendances~ Transactions ~ Ingénierie > Admin~ Nouveau~

TRS - 1 Year USD Phoenix Autocall Notes linked to Itau Unibanco Holding SA

Dashboard Quant Dashboard Positions ~ Calendar Payoff diagram [MEUIMEUIVRTERUEN Documents Trades= Quant'~ Actions de Workflow

Simulation graphique

Search contrac

40500

220310

2030802

000%

200%

“00%

w00%

20020
a0

22e0103

vy

Total value USD -7 190.88 Lifetime 0.98 years

A few words about myself.

| have been working at LexiFi for a little over ten years. Background in math, no

professional programming experience before joining LexiFi. | learned OCaml as a hobby.

LexiFi turned out to be an excellent choice for someone interested in OCaml, owing to
its long and unique history regarding OCaml. My own involvement with OCaml grew
over time, and currently | help maintain the OCaml compiler, as well as the Dune build
system and a few other projects. | am also a member of the executive committee of the
OCaml Foundation.

Come talk to me if you want to chat about any of these subjects!

10

LexiFi and OCaml

LexiFi has played an active part in the the development of the OCaml compiler.

Before joining LexiFi, Alain Frisch, our CTO, spent a few years working in the Gallium
team at INRIA (where OCaml was born).

LexiFi was a founding member of the Caml| Consortium and the OCaml Foundation, and
brought two of our technology clients to participate as well (SimCorp + Bloomberg).
They also developed and grew their own OCaml development teams following our

collaboration.

11

Some of the features where LexiFi has played a role (wholly or in part):

= Type-based disambiguation of constructors and record labels

= Inline records

= First-class modules

= Local exceptions

= Windows Unicode support

= Float unboxing optimizations

= RISC-V native-code backend

= Various warnings, warning mnemonics

= PPX (successor to Camlp4), and

= A lot of reviewing time, bug fixes, and standard library contributions

12

LexiFi is also involved in the community around OCaml. A number of tools that were

developed internally have been open-sourced.

native dynlink & flexdll (OCaml Windows linker)

sedlex (Unicode lexer generator)

csml (.NET/OCaml bridge)

ppx_tools (prehistoric predecessor to ppxlib)

gen_js_api (binding generator for the js_of_ocaml compiler)
landmarks (time profiler)

webgl-plot (WebGL-powered plotting engine)
dead_code_analyzer (global dead code detection)
ocaml-vdom (Elm architecture in OCaml)

The gen_js_api binding generator is used to build mainstream projects such as
OCaml-LSP.

13

Development Environment

github.com/AlDanial/cloc v 2.86 T=13.38 s (354.7 files/s, 273904.6 lines/s)

2811899

101389 872586

199769

Markdown 98630
Ccsv 49042
C# 35589
SVG 35134
C 25644
JSON 24430
SCSs 12656
XML 9372
CSs 6883
Bourne Shell 5856
Python 5411
make 4747
Java 3523
TeX 3239
PHP 2880
C/C++ Header 2663
TypeScript 1978
JavaScript 1902
Groovy 829

Mid-size monorepo: 900k LOC, 1500 modules

Currently running OCaml 5 in production. Migration from OCaml 4 straightforward,
but some issues around weak pointers and increased memory usage (issues being
actively worked on).

Target Windows, Linux and the Web. Developers work on Windows/WSL almost

exclusively.

Editors: Emacs/Vim/VS Code, in combination with OCaml-LSP/Merlin.

15

= Users of ocp-indent: trivial to integrate, works flawlessly, lets us maintain our
existing formatting style. Tried OCamlIFormat, but a few obstacles migrating an old
codebase: opinioned styling, complications around merging changes between “old”
and “new” branches, etc. But would like to switch to it eventually.

= Enforce policy of not wasting time discussing whitespace during review. Whitespace
diffs are strongly discouraged (— harms ability to track changes over time, which is

much more important than an uniform formatting style in a 25-year-old codebase).

16

= Cl: tried Travis, AppVeyor, GH Actions. Completely stateless model of cloud Cl
providers inefficient and expensive in our experience. Currently: a few beefy
dedicated VMs managed with Jenkins. Not fully stateless. We brought our budget
down considerably, and a full CI run on Windows went from ~40m to ~10m (~8m

on Linux).

= Keep binary cache of all our dependencies (compiler + third-party OCaml libraries),
built in the Cl and stored in S3 — quickly bootstrap a working environment in
developer machines without having to compile everything from scratch. Very useful
when switching branches (— small compiler patch for relocatibility).

17

Build system (in chronological order): Make, OMake, Dune.

Were happy with OMake: easy to extend, etc, but moved on when Dune arrived
because OMake was no longer actively developed. LexiFi funded Gerd Stolpmann
to maintain OMake for some time.

Dune provides a good out-of-the-box experience for a mostly-OCaml (4 C bindings)
codebase (probably not the best solution if your codebase is more heterogeneous)

Good things about Dune: correctness, composability (— trivial integration of
libraries into monorepo), excellent Windows support.

A few long-standing gripes about Dune: dependency overapproximation across
libraries means a lot of unnecessary recompilation. Sluggish performance on
Windows compared to Linux.

Did some experiments with Ninja, but integration with Merlin remains an issue.

18

What about libraries?

= Integrating a library means (potentially a lot of) code where bugs or security issues
can lurk. This means that a serious auditing process is required before integrating
third-party code into our codebase. Also licensensing issues.

= Strong preference for small, well tested and focused libraries that solve a precise
problem, rather than “frameworks” that try to solve many problems and that
require the user into a specific programming style or choices.

= Full list of OCaml libraries that we currently link: camlpdf, ocaml-sha, ocurl,
postgresql, sqlite, xmlm, camlzip, cmarkit, ocaml-dtoa, uutf, uucp, grc,

cryptokit.

= A few large non-OCaml libraries: Intel MKL, LibXL, WebView2 (= Chromium),
specialized Ul widgets, etc.

19

We do not use OPAM. Historically, OPAM came into the picture in 2011 and first-class
Windows support was introduced only recently. But more seriously, a package manager

like OPAM addresses the needs of a industrial environment only tangentially:

Having access to lots of libraries — dubious usefulness: we only integrate libraries
once in a while, small libraries that we can easily integrate directly in our monorepo
(with licenses which are compatible with our business model).

Dune solves the problem of easily getting access to libraries for us: just drop the
library repo in the tree and use it.

A powerful constraint solver is less useful when using libraries with few to no
dependencies.

Automatically updating libraries — bad

Lack of reproducibility when doing opam update — bad

Dedicated repositories, etc... are possible, but then you end up using a small
percentage of OPAM, and we already had ad-hoc infrastructure in place.

20

landmarks, our time profiler, uses PPX for instrumentation, and
gen_js_api has a PPX mode to generate JS bindings “inline”.

PPX is fragile and sensitive to upstream changes, degrades compilation time
Compiling a file “by hand” harder if using PPX

One really useful PPX is ppx_deriving, but we have Runtime Types (later)

Breaking PPX APl changes and the package ecosystem

CONroj 14

When a popular package with many reverse dependencies introduces breaking changes, what
practical options exist for the community o manage the transition?

21

What about parallelism?

Processor-based parallelism, communicating using message-passing over sockets,
using Marshal for serialization.

Works well, but inefficient memory use (not easy to share heap data).

We do not use Lwt/Async/etc or any other concurrency protocol. Hard to integrate
to an existing codebase (need to insert explicit yield points, monadic code “infects”
everything). Direct-style concurrency as in OCaml 5 helps here, but explicit yield
points still need to be inserted.

Investigating switching to OCaml 5 parallelism but task is gargantuan due to the
vast amount of global state. Also concerns about performance when increasing the
number of domains.

22

Language Use

Heavy users of “advanced"” features of the language. Objects to implement mixins,
.NET bindings, etc. GADTs for type-safe manipulation of Runtime Types.
First-class modules to implement “dynamic factories” (implemented first at LexiFi
and later upstreamed; if existentials had existed, maybe would have proceeded
differently), type-based disambiguation, labelled /optional arguments, inline records,
etc.

When in doubt, avoid fancy types (polymorphic variants, first-class modules,
objects, GADTs, etc.). Most bugs are logical and cannot be caught by the type
system anyway. Fancy types make the code harder to understand and modify.

Option and result types at library boundaries, exceptions for control flow and error
handling within implementations.

Immutability whenever possible, but without fetishizing it.

23

= Code readability is paramount. Anything that harms readability should be looked at
critically. Infix operators, monads and monadic operators, and other such features
are generally discouraged.

= Debugging: most bugs in ordinary OCaml code are logical errors. The quote of
Brian W. Kernighan and Rob Pike is relevant here: “As personal choice, we tend
not to use debuggers [...] we find stepping through a program less productive than
thinking harder and adding output statements and self-checking code at critical

places.”

= Having a way to print arbitrary values is very useful, and lacking in vanilla OCaml.

We solve it using Runtime Types (later).

24

Floats are boxed, but compiler can elide boxing of intermediate results in
FORTRAN-style code (i.e. loops instead of recursive functions). Numerical code is

often clearer when written this way.

Numerical code written in OCaml + a large but uniform set of primitives written in
C. Vectorized primitives used from the Intel MKL.

no-flat-float-array mode: float array is boxed, use floatarray instead.

We do not use F). Performance-critical code small subset of all code. Manual
optimization using the standard backend provides sufficient leverage. Automatically
optimizing the rest of the code not worth it currently (— bigger object size,
increased compilation time, gap between source and generated code).

Manually written C bindings. In practice, not hard to do. Very few bugs/issues so
far with this approach. Have not felt the need for eg ctypes so far.

25)

Deployment

Deploying on Windows.

Two production compilers on Windows: Microsoft's C compiler (MSVC) and GCC
(via the mingw-w64 toolchain). Cross-platform support in the standard and the
unix library is excellent.

Compile applicative code + runtime to a shared library: —output-complete-obj.

A small .NET driver starts up the necessary services and ends by jumping into the
OCaml runtime.

Deliver via NSIS installer (open-source scriptable Windows installer creator). The
installation script is less than 100 LOC, touched less than once a year.

Application signing on Windows via cloud API very accessible (< 10 EUR/month).

Use the CSML to bridge .NET and OCaml and to generate bindings to call .NET
libraries. Winform bindings on top of that to build native GUI. CSML currently
dormant, as all new development is happening on the Web.

26

_build/default/private/mlfi_control/csml_generated_gui.cs ® &

case System.Windows.Forms.DockStyle.Fill: return 781515427;
module Control : sig default: return 6;
type dock_style = System.Windows.Forms.DockStyle = [“None | “Top | "Bottom | }
“Left | “Right | "Fill]
class t = System.Windows.Forms.Control : object private static IntPtr cs2ml_stub_gui_control_t_is_disposed(IntPtr x@) {
method is_disposed: bool = get IsDisposed G
method add_control: t -> unit = instance Controls.Add System.Windows.Forms.Control y@ = (System.Windows.Forms.Control)LexiFi.Interop.
method set_child_index: t -> int -> unit = instance Controls.SetChildIndex Cenl.csml_get_csval(x9);
method remove_control: t -> unit = instance Controls.Remove Cesl 37 & Sy e
method remove_controls: unit = instance Controls.Clear IntPtr xr = (IntPtr) (yr 2 3 : 1);
method controls: t list = static LexiFi.Gui.Helpers.GetControls T
method form: Form.t weak nullable = instance FindForm
method destroy_handle: unit = static LexiFi.Gui.Helpers.DestroyHandle G (remien) 4 o (@)@ || ()it P i e iy
method handle_destroyed: (unit -> unit) -> unit = static LexiFi.Gui.Helpers. Gl e e)
AddHandeDestroyed }
method dispose: unit = instance Dispose private static Csml.cs2ml_typl cs2ml_fptr_gui_control_t_is_disposed = null;
method release: unit = kill public delegate void cs2ml_styp_gui_control_t_add_control(System.Windows.Forms.
let gui_control_t_suspend_drawing : (gui_control t -> unit) = Csml_iface. "gui_waitform_progress” "progress”
find_cs2ml_callback 1 "gui_control_t_suspend drawing” "suspend_drawing" let set_marquee_mode : (gui_waitform t -> unit) = Csml_iface.find_cs2ml_callback 1
let gui_control_t_resume_drawing : (gui_control t -> unit) = Csml_iface. "gui_waitform_set_marquee_mode” "set_marquee_mode"
" "resume_drawing” let set_main_form : (gui_waitform_t -> gui_form_t -> unit) = Csml_iface.
" “set_main_form"

find_cs2ml_callback 1 "gui_control_t_resume_drawing
class t handle = object(this) find_cs2ml_callback 2 “gui_waitform_set_main_form
initializer ignore this end
inherit Csml_iface.csval handle module Control = struct
method is_gui_control t = () type dock_style = gui_control_dock_style
method is_disposed = gui_control t_is_disposed (this :> gui_control_t) let gui_control_t_is_disposed : (gui_control_t -> bool) = Csml_iface.
method add_control = gui_control_t_add_control (this :> gui_control_t) find_cs2ml_callback 1 "gui_control t_is_disposed” "is_disposed”
method set_child index = gui_control_t_set_child_index (this :> gui_control_t) let gui_control t_add control : (gui_control t -> gui_control t -> unit) =
method remove_control = gui_control_t_remove_control (this :> gui_control_t) Csml_iface.find_cs2ml_callback 2 “gui_control_t_add_control" "add_control”
method remove_controls = gui_control_t_remove_controls (this :> gui_control_t) let gui_control_t_set_child_index : (gui_control_t -> gui_control_t -> int -> unit)
method controls = gui_control_t_controls (this :> gui_control_t) = csml_iface.find_cs2ml_callback 3 "gui_control_t_set_child_index"
method form = gui_control_t_form (this :> gui_control_t) "set_child_index"
method destroy_handle = gui_control_t_destroy_handle (this :> gui_control_t) let gui_control_t_remove_control : (gui_control t -> gui_control t -> unit) =
method handle_destroyed = gui_control_t_handle_destroyed (this :> gui_control_t) Csml_iface.find_cs2ml_callback 2 “gui_control_t_remove_control” "remove_control”
> WSL: Ubuntu-20.04 | 22 master* Ln 5873, Col 1 (416 selected) Spaces:2 UTF-8 LF C# (2

Nom

I Prince

W sam 2 settings
I skeleton

MW vscode-lexifi
M webview?

Modifi€ le
02/09/2025 09:33
10/12/2024 17:29
10/12/2024
02/09/2025 09:33
10/12/2024 17:28

Type

Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers

Dossier de fichiers

Taille

[\ apropos native.exe

05/09/2025 07:52

Application

2158 Ko

Il apropos_rfa_helper.exe
Il apropos_scheduler.exe
Il blackscholes.exe
lexifi_apropos.exe
! ActiproSoftware.Shared.WinForms.dll
! ActiproSoftware. SyntaxEditor.WinForms.dll

05/09/2025 07:52
05/09/2025 07:52
05/09/2025 11:26
05/09/2025 07:52
11/09/2020 10:57
11/09/2020 10:57

Application
Application
Application
Application
Extension de I'application

Extension de I'application

113 Ko
9931 Ko
1284 Ko

717 Ko

360 Ko

956 Ko

[! apropos_native.dll

06/09/2025 07:52

Extension de I'application

161982 Ko

B concrtido.di

B EikonPipeDiLdil

! intel_math-win64-amdéd.dll

B libcur-x64.dil

B libeayz2.di

B libiconv-2.d1l

B tibinti-2.di

B tibpg.di

B tibadn

B libzstd.dil

! Microsoft.Web.WebView2.Core.dll
B Microsoft Web.WebView2.WinFormes.dIl
B msveprond

B msvepizndi

B msvepldod

B msvepian_1.di

B msvepldo_2di

14/03/2024 08:09
11/09/2020 11:03
13/02/2024 15:21
12/01/2025 08:49
02/03/2021 20:52
02/03/2021 20:52
02/03/2021 20:52
02/03/2021 20:52
15/04/2025 14:38
27/03/2024 00:26
04/04/2024 17:29
04/04/2024 17:29
11/09/2020 11:16
11/09/2020 11:16
14/03/2024 08:09
14/03/2024 08:09
14/03/2024 08:09

Extension de I'application
Extension de I'application
Extension de I'application
Extension de I'application
Extension de I'application
Extension de I'application
Extension de I'application
Extension de I'application
Extension de I'application
Extension de I'application
Extension de I'application
Extension de I'application
Extension de I'application
Extension de I'application
Extension de ['application
Extension de I'application

Extension de ['application

316 Ko
3153 Ko
19232 Ko
3120 Ko
1624 Ko
1651 Ko
670 Ko
275 Ko
9241 Ko
1226 Ko
551 Ko
38 Ko
594 Ko
645 Ko
560 Ko
36 Ko
263 Ko

c A& nojebar@LEXIFI-LE: ~/mifi X [E] ~mifi/private/distribjwindows X +

)= makensis fDAPP_SUFFIX=Prod /DVERSION=2825.86.2 lexifi_apropos_auto.nsi
Command line defined: "APP_SUFFIX=Prod”

‘ Command line define "VERSION=2025.086.2"
Processing config: Users\najebar\shared_packages\nsis.3.@8\nsis-3.88\nsisconf.nsh
Processing script file: "lexifi_apropos_auto.nsi” (ACP)

Processed 1 file, writing output (xBE-unicode):

C:\Users\nojebar\mlfi\private\distrib\windows>if NOT "" == "™ "" sipn /v fdebug /fd SHA256 /tr http://timesta
mp.acs.microsoft.com /td SHA256 /dlib /dmdf "C:\Usersinojebar\mlfi\private\distrib\windows\trusted-signing
.json" "C:\cypwin64\tmp\nst61@F.tmp"

Output: "C:\Users\nojebar\mlfi\private\distrib\windows\lexifi_apropos_x64_setup_auto.exe"

Install: 5 pages (328 bytes), 2 sections (2 required) (4144 bytes), 1841 instructions (51548 bytes), 1555 str
ings (61644 bytes), 1 language table (386 bytes).

Uninstall: 1 page (128 bytes), 1 section (2872 bytes), 6 instructions (168 bytes), 52 strings (1672 bytes), 1
language table (194 bytes).

Datablock optimizer saved 745536 bytes (~8.8%).

Using z1ib (compress whole) compression.

Welcome to LexiFi Apropos - Pro

EXE header size: 361472 / 48448 bytes
Install code: (118426 bytes)
Install data: (8738581858 bytes)
Uninstall code+data: (362483 bytes)
Compressed data: 348220232 / 874362679 bytes
CRC (@x1A1EE43A): 4 / 4 bytes

Total size: 348581708 / 874483131 bytes (39.8%
LU SUMTogate
DellFFDPWmiService
igfxCUIService Module
Intel(R) Dynamic Application Loader Host Interfac
Intel(R) Rapid Storage Technology Management ¢
Intel® Graphics Command Center Service

Intel HD Graphics Drivers for Windows(R)

Deploying on Linux, the Cloud and the Web.

= For institutional clients, standard deployment involves a Web frontend, a server-side
running under Docker on AWS EC2 or standalone virtual machine. Build Docker
image in Cl, upload to S3, download from deployment host. On-premise hosting by
the clients is also supported.

= For some clients (“platforms”) the web server exposes only HTTP APlIs (no
frontend) that they can use to build their own products.

= Interfacing with AWS for deployment tasks is done mostly using Python scripts (+
static types!), which is quite good at this task. Initially using OCaml, but covering
all needed APIs was a lot of work. We did not find a “turnkey” alternative by the

community.

= On the Web: we use the excellent js_of_ocaml compiler, combined with our own
(open-source) gen_js_api to generate API bindings and ocaml-vdom to write
client-side applications.

30

) _build/default/private/thirdparty/ocaml-vdom/lib/js_browser.ml @ &

end ignore (0js.call (t_to js x474) "removeAllRanges™ [|[])
end
module Document: sig module Document =
type t struct
val t_of_js: Ojs.t -> t type t = Ojs.t
val t_to_js: t -> 0js.t let rec t_of js : Ojs.t -> t = fun (x476 : 0js.t) -> x476
and t_to_js : t -> 0js.t = fun (x475 : Ofs.t) -> x475
val create_element: t -> string -> Element.t [@@js.call] let (create_element : t -> string -> Element.t) =
val create_element_ns: t -> string -> string -> Element.t [@@js.call fun (x478 : t) ->
“createElementNS™] fun (x477 : string) ->
val create_text_node: t -> string -> Element.t [@@js.call] Element.t_of js
val create_event: t -> string -> Event.t [@@js.call] (0js.call (t_to_js x478) "createElement”
val create_range: t -> Range.t [@@js-call] [l(ojs.string_to_js x477)|1)
let (create_clement_ns : t -> string -> string -> Element.t) =
val get_element_by_id: t -> string -> Element.t option [@@js.call] fun (%281 : t) >
val get_elements by _class_name: t -> string -> Element.t array [@@js.call] fun (x473 : string) ->
val get_elements_by_tag name: t -> string -> Element.t array [@@js.call] fun (%430 : string) ->
Element.t_of_js
val body: t -> Element.t [@@]s.get] (0js.call (t_to_js x481) “"createElementNS”
val document_element: t -> Element.t [@@js.get] [1(0js.string_to_js x479);(0js.string to_js x438)|])
val active_element: t -> Element.t [@@]fs.get] let (create_text_node : t -> string -> Element.t) =
fun (x483 : t) >
val cookie: t -> string [@@js-get] fun (x482 : string) ->
val set_cookie: t -> string -> unit [@@js.set] Element.t_of_js
val set_title: t -> string -> unit [@@]s.set] (0js.call (t_to_js x483) "createTextNode™
[I(0s.string_to_js x482)|1)
val open_: t -> 2mime_type:string -> ?history_mode:string -> unit -> unit let (create_event : t -» string -> Event.t) =
[@@js-call "open”] fun (x485 : t) >
write: t -> string -> unit [@@js-call] fun (x484 : string) ->
val writeln: t -> string -> unit [@@js.call] Event.t_of_js
val close: t -> unit [@@js.call] (0js.call (t_to_js x485) "createEvent”
[I(0js.string_to_js x484)|])

5 WSL: Ubuntu-2004 £ master) Ln 1975, Col 1(56 selected) Spaces:2 UTF-8 LF OCaml [}

Source code deployments.

= Some large technology clients licensed LexiFi's technology in source code form.
These companies sometimes started internal OCaml dev teams from scratch
following collaboration with LexiFi (eg Bloomberg), and their use of OCaml grew

considerably over time.

= For early version of one such project, we shipped our code in static library form,
which is not an easy feat to replicate with other languages.

= Other technology clients access LexiFi's technology via a standalone command-line
tool. The tool can be used directly or via thin, machine-generated, C# or Java
APls.

32

The Secret Sauce

LexiFi maintains a fork of the OCaml compiler since the beginning (a 25-year-old fork!),
extended with a form of type reflection. This small extension is a key building block of
LexiFi's technology. We would absolutely not be able to be as productive without it.

The LexiFi compiler included a number of other extensions over the years. Some of
them were eventually upstreamed into the official compiler (eg first-class modules), while
others ended up being removed. In order to simplify maintenance and increase
interoperability with the larger OCaml ecosystem, our strategy for a number of years
now has been to reduce the diff with the official compiler as much as possible. In
particular, we no longer extend/modify OCaml’s syntax.

33

I make

let rec show : type t. t: t ttype -> t -> unit = fun ~t x ->

let open M1fi_xtypes in

match xtype_of_ttype t with
Int -> print_int x
String -> Printf.printf "%S" x
Float -> print_float x
List (t,) ->
print_char '['; List.iteri (fun i x -> if i > @ then print_string “;
Tuple r ->

; show ~t x) x; print_char "]°

print_char '(';
List.iteri (fun i (Field rf) ->
if i > @ then print_string ", "; show ~t:(RecordField.ttype rf) (RecordField.get rf x)) (Record.fields r);
print_char ')*
| _ >

failuith "todo”

nojebar@LEXIFI-L6:~/mlfi$ make top
OCaml version 5.3.8+LEXIFI
Enter #help;; for help.

#use "show.ml";;

val show : t:'t M1fi_types.ttype -> 't -> unit = <fun>

let x = (42, "FUN OCaml®, [101.5; 3.1492]);;

val x : int * string * float list = (42, "FUN OCaml™, [1@1.5; 3.1492])
show x;;

(42, "FUN OCaml", [101.5; 3.1482])- : unit = ()

i |

> WSL: Ubuntu-20.04 Z—° master*

. Search..(Ctd+K) |4 = @ @ O ol » # | Ele History Admin

2 X 7~ File~ History~ Admin~ Navigation~ Help v
Create Cancel [ChecdRoson
New Simple European Call/Put a Maturity date: 20240912
Kind:
Strike: 4000.00
Maturity date Underlying: EURO_STOXX_50
Currency:
Kind Ca v EUR
N n Call/
strike 40008 ¥ View Data
13 instrument_name
Underlying contract_parameters
Some
variant
. record
drop- 0 maturity_date
type call_put = date>2024-09-18T12: date
| ca11 maturity_date
| Put kind
Call
kind
strike
z g float float
type parameters = strike
{ underlying
maturity_date: M1fi_date.t; Simple
kind: call_put; string>Bloomberg:SXSE Index</string
strike: few_digits; Simple
underlying: Equity_underlying.equity_underlying; underlying
currency: MLfi_currency.t; currency
} EUR
currency

> WSL: Ubuntu-20.04 §° master* Ln 12, Col4 Spaces:2 UTF-§ cecard

The ~t argument is synthesized by the compiler. This mechanism allows using ordinary
OCaml code to write type-deriving functions:

= generic printing routine

= codecs to- and from- all kinds of formats (JSON/XML/etc)
= deriving GUIs from type definitions

= deriving SQL schemas, queries from type definitions

= and more

Unlike ppx_deriving, the integration with the typecker makes it very ergonomic (the
safety of OCaml with the usability of Python?). New “deriving” functionality is as
difficult as writing an ordinary function. Developers can start using it moments after
learning it.

If you want to learn more about this, come to tomorrow's workshop!

36

Human Aspects

Hiring good OCaml programmers takes a bit of patience but is doable. The
language seems to attract good quality candidates: high competency/candidate

ratio.

By comparison, recently we tried to hire a Python/DevOps programmer and had
the opposite problem: lots of candidates, but low competency/candidate ratio.

Quants: our hires typically have only a general software engineering background,
and no knowledge of OCaml when they arrive. They are able to learn it and

become productive quickly.

We have a good experience retaining hires: very low turnover, most of developers
seem happy to write OCaml for a living (a good working atmosphere and varied set

of tasks helps a lot as well).

Mostly hire people who learned functional programming in University. Most hires

are junior or mid-level developers, who evolve and grow while working at LexiFi.

37

Conclusion

OCaml is not just for static analyzers, compilers, etc... It is possible, and pleasant, to

use OCaml to build ordinary desktop applications, client/server software, web services,

etc. ..

and to do so commercially.

A simple language with a simple cost model, where it is easy to track how much
time and space is used.

A compiler that produces efficient code that looks like the source code, with only
predictable optimizations.

A low-latency garbage collector
Excellent stability of the language and standard library (backwards compatibility).

Same language for the “back” and the “front” (thanks to js_of_ocaml) is a

productivity boost, as it allows easy sharing of code between both ends.

38

Thanks! Interested?
https: //www.lexifi.com/careers

https://www.lexifi.com/careers

	LexiFi and OCaml
	Development Environment
	Language Use
	Deployment
	The Secret Sauce
	Human Aspects
	Conclusion
	Thanks! Interested? https://www.lexifi.com/careers

