
OCaml at LexiFi
25 years of OCaml

Nicolás Ojeda Bär, nicolas.ojeda.bar@lexifi.com
FUN OCaml, September 15, 2025, Warsaw

1



LexiFi is a Paris-based software editor founded in 2000 specializing in the treatment of
heterogeneous financial structured products.

Its software is fully written in OCaml. Its technology is based on an algebraic DSL
allowing it to describe arbitrary contract payoffs in a generic way. This DSL allows
applying a programming language-based approach to the treatment of such contracts.

2



3



4



• LexiFi was likely first software editor to use OCaml in an industrial setting and to
license (sell) software written in OCaml.

• While an unorthodox choice of language to develop a commercial desktop
application at the time, it turned out to be extremely good one in hindsight. It has
allowed a small team of developers to punch above its weight.

• LexiFi applies OCaml outside of its traditional areas of application (static analysis,
compilation, high-assurance software, etc).

• Historical note: factors that tilted the scale towards OCaml at the time were use of
a standard build system (Make), the straightforward C FFI which allowed easy
interoperability, a readable, compact and open-source compiler (→ easy to modify).

5



6



7



8



9



A few words about myself.

I have been working at LexiFi for a little over ten years. Background in math, no
professional programming experience before joining LexiFi. I learned OCaml as a hobby.

LexiFi turned out to be an excellent choice for someone interested in OCaml, owing to
its long and unique history regarding OCaml. My own involvement with OCaml grew
over time, and currently I help maintain the OCaml compiler, as well as the Dune build
system and a few other projects. I am also a member of the executive committee of the
OCaml Foundation.

Come talk to me if you want to chat about any of these subjects!

10



LexiFi and OCaml



LexiFi has played an active part in the the development of the OCaml compiler.

Before joining LexiFi, Alain Frisch, our CTO, spent a few years working in the Gallium
team at INRIA (where OCaml was born).

LexiFi was a founding member of the Caml Consortium and the OCaml Foundation, and
brought two of our technology clients to participate as well (SimCorp + Bloomberg).
They also developed and grew their own OCaml development teams following our
collaboration.

11



Some of the features where LexiFi has played a role (wholly or in part):

• Type-based disambiguation of constructors and record labels
• Inline records
• First-class modules
• Local exceptions
• Windows Unicode support
• Float unboxing optimizations
• RISC-V native-code backend
• Various warnings, warning mnemonics
• PPX (successor to Camlp4), and
• A lot of reviewing time, bug fixes, and standard library contributions

12



LexiFi is also involved in the community around OCaml. A number of tools that were
developed internally have been open-sourced.

• native dynlink & flexdll (OCaml Windows linker)
• sedlex (Unicode lexer generator)
• csml (.NET/OCaml bridge)
• ppx_tools (prehistoric predecessor to ppxlib)
• gen_js_api (binding generator for the js_of_ocaml compiler)
• landmarks (time profiler)
• webgl-plot (WebGL-powered plotting engine)
• dead_code_analyzer (global dead code detection)
• ocaml-vdom (Elm architecture in OCaml)

The gen_js_api binding generator is used to build mainstream projects such as
OCaml-LSP.

13



Development Environment



14



• Mid-size monorepo: 900k LOC, 1500 modules

• Currently running OCaml 5 in production. Migration from OCaml 4 straightforward,
but some issues around weak pointers and increased memory usage (issues being
actively worked on).

• Target Windows, Linux and the Web. Developers work on Windows/WSL almost
exclusively.

• Editors: Emacs/Vim/VS Code, in combination with OCaml-LSP/Merlin.

15



• Users of ocp-indent: trivial to integrate, works flawlessly, lets us maintain our
existing formatting style. Tried OCamlFormat, but a few obstacles migrating an old
codebase: opinioned styling, complications around merging changes between “old”
and “new” branches, etc. But would like to switch to it eventually.

• Enforce policy of not wasting time discussing whitespace during review. Whitespace
diffs are strongly discouraged (→ harms ability to track changes over time, which is
much more important than an uniform formatting style in a 25-year-old codebase).

16



• CI: tried Travis, AppVeyor, GH Actions. Completely stateless model of cloud CI
providers inefficient and expensive in our experience. Currently: a few beefy
dedicated VMs managed with Jenkins. Not fully stateless. We brought our budget
down considerably, and a full CI run on Windows went from ~40m to ~10m (~8m
on Linux).

• Keep binary cache of all our dependencies (compiler + third-party OCaml libraries),
built in the CI and stored in S3 → quickly bootstrap a working environment in
developer machines without having to compile everything from scratch. Very useful
when switching branches (→ small compiler patch for relocatibility).

17



• Build system (in chronological order): Make, OMake, Dune.

• Were happy with OMake: easy to extend, etc, but moved on when Dune arrived
because OMake was no longer actively developed. LexiFi funded Gerd Stolpmann
to maintain OMake for some time.

• Dune provides a good out-of-the-box experience for a mostly-OCaml (+ C bindings)
codebase (probably not the best solution if your codebase is more heterogeneous)

• Good things about Dune: correctness, composability (→ trivial integration of
libraries into monorepo), excellent Windows support.

• A few long-standing gripes about Dune: dependency overapproximation across
libraries means a lot of unnecessary recompilation. Sluggish performance on
Windows compared to Linux.

• Did some experiments with Ninja, but integration with Merlin remains an issue.

18



What about libraries?

• Integrating a library means (potentially a lot of) code where bugs or security issues
can lurk. This means that a serious auditing process is required before integrating
third-party code into our codebase. Also licensensing issues.

• Strong preference for small, well tested and focused libraries that solve a precise
problem, rather than “frameworks” that try to solve many problems and that
require the user into a specific programming style or choices.

• Full list of OCaml libraries that we currently link: camlpdf, ocaml-sha, ocurl,
postgresql, sqlite, xmlm, camlzip, cmarkit, ocaml-dtoa, uutf, uucp, qrc,
cryptokit.

• A few large non-OCaml libraries: Intel MKL, LibXL, WebView2 (= Chromium),
specialized UI widgets, etc.

19



We do not use OPAM. Historically, OPAM came into the picture in 2011 and first-class
Windows support was introduced only recently. But more seriously, a package manager
like OPAM addresses the needs of a industrial environment only tangentially:

• Having access to lots of libraries → dubious usefulness: we only integrate libraries
once in a while, small libraries that we can easily integrate directly in our monorepo
(with licenses which are compatible with our business model).

• Dune solves the problem of easily getting access to libraries for us: just drop the
library repo in the tree and use it.

• A powerful constraint solver is less useful when using libraries with few to no
dependencies.

• Automatically updating libraries → bad
• Lack of reproducibility when doing opam update → bad
• Dedicated repositories, etc. . . are possible, but then you end up using a small

percentage of OPAM, and we already had ad-hoc infrastructure in place.

20



Very light use of PPX.

• landmarks, our time profiler, uses PPX for instrumentation, and
• gen_js_api has a PPX mode to generate JS bindings “inline”.
• PPX is fragile and sensitive to upstream changes, degrades compilation time
• Compiling a file “by hand” harder if using PPX
• One really useful PPX is ppx_deriving, but we have Runtime Types (later)

21



What about parallelism?

• Processor-based parallelism, communicating using message-passing over sockets,
using Marshal for serialization.

• Works well, but inefficient memory use (not easy to share heap data).

• We do not use Lwt/Async/etc or any other concurrency protocol. Hard to integrate
to an existing codebase (need to insert explicit yield points, monadic code “infects”
everything). Direct-style concurrency as in OCaml 5 helps here, but explicit yield
points still need to be inserted.

• Investigating switching to OCaml 5 parallelism but task is gargantuan due to the
vast amount of global state. Also concerns about performance when increasing the
number of domains.

22



Language Use



• Heavy users of “advanced” features of the language. Objects to implement mixins,
.NET bindings, etc. GADTs for type-safe manipulation of Runtime Types.
First-class modules to implement “dynamic factories” (implemented first at LexiFi
and later upstreamed; if existentials had existed, maybe would have proceeded
differently), type-based disambiguation, labelled/optional arguments, inline records,
etc.

• When in doubt, avoid fancy types (polymorphic variants, first-class modules,
objects, GADTs, etc.). Most bugs are logical and cannot be caught by the type
system anyway. Fancy types make the code harder to understand and modify.

• Option and result types at library boundaries, exceptions for control flow and error
handling within implementations.

• Immutability whenever possible, but without fetishizing it.

23



• Code readability is paramount. Anything that harms readability should be looked at
critically. Infix operators, monads and monadic operators, and other such features
are generally discouraged.

• Debugging: most bugs in ordinary OCaml code are logical errors. The quote of
Brian W. Kernighan and Rob Pike is relevant here: “As personal choice, we tend
not to use debuggers [. . . ] we find stepping through a program less productive than
thinking harder and adding output statements and self-checking code at critical
places.”

• Having a way to print arbitrary values is very useful, and lacking in vanilla OCaml.
We solve it using Runtime Types (later).

24



• Floats are boxed, but compiler can elide boxing of intermediate results in
FORTRAN-style code (i.e. loops instead of recursive functions). Numerical code is
often clearer when written this way.

• Numerical code written in OCaml + a large but uniform set of primitives written in
C. Vectorized primitives used from the Intel MKL.

• no-flat-float-array mode: float array is boxed, use floatarray instead.

• We do not use Fλ. Performance-critical code small subset of all code. Manual
optimization using the standard backend provides sufficient leverage. Automatically
optimizing the rest of the code not worth it currently (→ bigger object size,
increased compilation time, gap between source and generated code).

• Manually written C bindings. In practice, not hard to do. Very few bugs/issues so
far with this approach. Have not felt the need for eg ctypes so far.

25



Deployment



Deploying on Windows.

• Two production compilers on Windows: Microsoft’s C compiler (MSVC) and GCC
(via the mingw-w64 toolchain). Cross-platform support in the standard and the
unix library is excellent.

• Compile applicative code + runtime to a shared library: -output-complete-obj.

• A small .NET driver starts up the necessary services and ends by jumping into the
OCaml runtime.

• Deliver via NSIS installer (open-source scriptable Windows installer creator). The
installation script is less than 100 LOC, touched less than once a year.

• Application signing on Windows via cloud API very accessible (< 10 EUR/month).

• Use the CSML to bridge .NET and OCaml and to generate bindings to call .NET
libraries. Winform bindings on top of that to build native GUI. CSML currently
dormant, as all new development is happening on the Web.

26



27



28



29



Deploying on Linux, the Cloud and the Web.

• For institutional clients, standard deployment involves a Web frontend, a server-side
running under Docker on AWS EC2 or standalone virtual machine. Build Docker
image in CI, upload to S3, download from deployment host. On-premise hosting by
the clients is also supported.

• For some clients (“platforms”) the web server exposes only HTTP APIs (no
frontend) that they can use to build their own products.

• Interfacing with AWS for deployment tasks is done mostly using Python scripts (+
static types!), which is quite good at this task. Initially using OCaml, but covering
all needed APIs was a lot of work. We did not find a “turnkey” alternative by the
community.

• On the Web: we use the excellent js_of_ocaml compiler, combined with our own
(open-source) gen_js_api to generate API bindings and ocaml-vdom to write
client-side applications.

30



31



Source code deployments.

• Some large technology clients licensed LexiFi’s technology in source code form.
These companies sometimes started internal OCaml dev teams from scratch
following collaboration with LexiFi (eg Bloomberg), and their use of OCaml grew
considerably over time.

• For early version of one such project, we shipped our code in static library form,
which is not an easy feat to replicate with other languages.

• Other technology clients access LexiFi’s technology via a standalone command-line
tool. The tool can be used directly or via thin, machine-generated, C# or Java
APIs.

32



The Secret Sauce



LexiFi maintains a fork of the OCaml compiler since the beginning (a 25-year-old fork!),
extended with a form of type reflection. This small extension is a key building block of
LexiFi’s technology. We would absolutely not be able to be as productive without it.

The LexiFi compiler included a number of other extensions over the years. Some of
them were eventually upstreamed into the official compiler (eg first-class modules), while
others ended up being removed. In order to simplify maintenance and increase
interoperability with the larger OCaml ecosystem, our strategy for a number of years
now has been to reduce the diff with the official compiler as much as possible. In
particular, we no longer extend/modify OCaml’s syntax.

33



34



35



The ~t argument is synthesized by the compiler. This mechanism allows using ordinary
OCaml code to write type-deriving functions:

• generic printing routine
• codecs to- and from- all kinds of formats (JSON/XML/etc)
• deriving GUIs from type definitions
• deriving SQL schemas, queries from type definitions
• and more

Unlike ppx_deriving, the integration with the typecker makes it very ergonomic (the
safety of OCaml with the usability of Python?). New “deriving” functionality is as
difficult as writing an ordinary function. Developers can start using it moments after
learning it.

If you want to learn more about this, come to tomorrow’s workshop!

36



Human Aspects



• Hiring good OCaml programmers takes a bit of patience but is doable. The
language seems to attract good quality candidates: high competency/candidate
ratio.

• By comparison, recently we tried to hire a Python/DevOps programmer and had
the opposite problem: lots of candidates, but low competency/candidate ratio.

• Quants: our hires typically have only a general software engineering background,
and no knowledge of OCaml when they arrive. They are able to learn it and
become productive quickly.

• We have a good experience retaining hires: very low turnover, most of developers
seem happy to write OCaml for a living (a good working atmosphere and varied set
of tasks helps a lot as well).

• Mostly hire people who learned functional programming in University. Most hires
are junior or mid-level developers, who evolve and grow while working at LexiFi.

37



Conclusion



OCaml is not just for static analyzers, compilers, etc. . . It is possible, and pleasant, to
use OCaml to build ordinary desktop applications, client/server software, web services,
etc. . . and to do so commercially.

• A simple language with a simple cost model, where it is easy to track how much
time and space is used.

• A compiler that produces efficient code that looks like the source code, with only
predictable optimizations.

• A low-latency garbage collector

• Excellent stability of the language and standard library (backwards compatibility).

• Same language for the “back” and the “front” (thanks to js_of_ocaml) is a
productivity boost, as it allows easy sharing of code between both ends.

38



Thanks! Interested?
https://www.lexifi.com/careers

https://www.lexifi.com/careers

	LexiFi and OCaml
	Development Environment
	Language Use
	Deployment
	The Secret Sauce
	Human Aspects
	Conclusion
	Thanks! Interested? https://www.lexifi.com/careers

