Generating Static Websites
the Functional Programming Way

Xavier Van de Woestyne = xvw.lol = Tarides

Generating Static Websites
the Functional Programming Way

Xavier Van de Woestyne

xvw.lol

Tarides

Making Critical Systems Better

We help our clients build reliable, secure, and
high-performance systems.

(We are strongly involved into the OCaml ecosystem)

Generating Static Websites
the Functional Programming Way

Xavier Van de Woestyne = xvw.lol = Tarides

Making Critical Systems Better

We help our clients build reliable, secure, and

high-performance systems.
But this presentation has nothing to do

with my work. (We are strongly involved into the OCaml ecosystem)

| mainly work on the editor support
(Merlin, LSP, Emacs)

Theory and practice behind a Build-System
approach to static site generation

Generating Static Websites
the Functional Programming Way

Xavier Van de Woestyne = xvw.lol = Tarides

Making Critical Systems Better

We help our clients build reliable, secure, and

high-performance systems.
But this presentation has nothing to do

with my work. (We are strongly involved into the OCaml ecosystem)

| mainly work on the editor support
(Merlin, LSP, Emacs)

on top of YOCaml !

which has recently finally been . . 5
e & QT Theory and practice behind a Build-System
https://yocaml.github.io/tutorial approach to static site generation

Generating Static Websites
the Functional Programming Way

Xavier Van de Woestyne = xvw.lol = Tarides

Making Critical Systems Better

We help our clients build reliable, secure, and
high-performance systems.

But this presentation has nothing to do
(We are strongly involved into the OCaml ecosystem)

with my work.

| mainly work on the editor support
(Merlin, LSP, Emacs)

Static site generator?

A tool that processes documents to produce an entire website
without requiring additional server processing to serve pages.
(It is therefore a highly specialised build system.)

Static site generator?

A tool that processes documents to produce an entire website
without requiring additional server processing to serve pages.
(It is therefore a highly specialised build system.)

e super easy to deploy
e restriction on interaction (JAM)
e makes trivial things extremely difficult

Static site generator?

A tool that processes documents to produce an entire website
without requiring additional server processing to serve pages.
(It is therefore a highly specialised build system.)

e super easy to deploy
e restriction on interaction (JAM)

iike backlinks e makes trivial things extremely difficult

and transclusion

Static site generator?

A tool that processes documents to produce an entire website
without requiring additional server processing to serve pages.
(It is therefore a highly specialised build system.)

e super easy to deploy
e restriction on interaction (JAM)

iike backlinks e makes trivial things extremely difficult

and transclusion

Static site generator?

A tool that processes documents to produce an entire website

without requiring additional server processing to serve pages.

(It is therefore a highly specialised build system.)

e super easy to deploy

Please, stop using Medium

It is highly customizable

It is fun (and in OCaml)

It can be a permanent Project
Itis fun (2)

e restriction on interaction (JAM)
e makes trivial things extremely difficult

like backlinks
and transclusion

Static site generator?

A tool that processes documents to produce an entire website

without requiring additional server processing to serve pages.

(It is therefore a highly specialised build system.)

e super easy to deploy

Please, stop using Medium

It is highly customizable

It is fun (and in OCaml)

It can be a permanent Project
Itis fun (2)

e restriction on interaction (JAM)
e makes trivial things extremely difficult

like backlinks
and transclusion

The internet is fun when you're building personal websites.
Honestly, The Geocities era is so much better than Medium!

Create a static blog generator is easy

Create a static blog generator is easy

blog.mi

let () =
let file = Sys.argv.(l) in
let file html =
file
| > Filename.basename

|> Filename.remove extension

in

let target = " www/" * file html in

let (metadata, content) = File.read file in
let markdown = Markdown.of string content in

let injected =
Template.inject
"article.html"
metadata
markdown

in File.write target injected

Create a static blog generator is easy

blog.mi

let () =
let file = Sys.argv.(l) in
let file html =
file
| > Filename.basename

|> Filename.remove extension

in

let target = " www/" * file html in

let (metadata, content) = File.read file in
let markdown = Markdown.of string content in

let injected =
Template.inject
"article.html"
metadata
markdown

in File.write target injected

Makefile

~www/images/%.png: images/%.png

cp S (<) $(@)

_www/%.css: css/%.png

cp $(<) $(@)

_www/posts/%.md: www/%.html

dune exec blog.exe -- $ (<)

Create a static blog generator is easy

blog.ml Makefile
let () =
let file = Sys.argv.(l) in _www/images/%.png: images/%.png
let file html = cp $(<) $(@)
file
|> Filename.basename _www/%.css: css/%.png
|> Filename.remove extension cp $(<) $(@)
in
let target = " www/" ~ file html in _www/posts/%.md: _www/%.html
let (metadata, content) = File.read file in dune exec blog.exe -- $(<)

let markdown = Markdown.of string content in
let injected =
Template.inject
"article.html"
metadata That's it
markdown Let's go further
in File.write target injected

Program

How to be generic

Execution abstraction with effects and an 10 monad.
Data model abstraction with applicative validation.

Program

Program

How to be generic

Execution abstraction with effects and an 10 monad.
Data model abstraction with applicative validation.

How to be minimal

Handling Static dependencies using Arrows
(Strong Profunctor + Category)

Program

If we have time

How to be generic

Execution abstraction with effects and an 10 monad.
Data model abstraction with applicative validation.

How to be minimal

Handling Static dependencies using Arrows
(Strong Profunctor + Category)

How to be extensible

Reasonin~ “ _.und the extensibility, .~ integrate features
“.opired by the Xanadu project.

Execution abstraction

WHY?

Execution abstraction

e Trivial reason: Unix, Windows, abstracting over the platform
e Drastically facilitates testability (a test-context is just another platform)

e Supports exotic target types (ie: GIT + Mirage)
WHY?

Execution abstraction

HOW?

e Trivial reason: Unix, Windows, abstracting over the platform
e Drastically facilitates testability (a test-context is just another platform)

e Supports exotic target types (ie: GIT + Mirage)
WHY?

Execution abstraction

e Manual encoding: Functors/FCM, OOP, Functions
e Effect System: Free/Freer, Tagless Final, ReaderT
e OCaml User Defined Effects

HOW?
e Trivial reason: Unix, Windows, abstracting over the platform
e Drastically facilitates testability (a test-context is just another platform)
e Supports exotic target types (ie: GIT + Mirage)
WHY?

Execution abstraction

e Manual encoding: Functors/FCM, OOP, Functions
e Effect System: Free/Freer, Tagless Final, ReaderT
e OCaml User Defined Effects

We picked this for the hype

e Trivial reason: Unix, Windows, abstracting over the platform
e Drastically facilitates testability (a test-context is just another platform)

e Supports exotic target types (ie: GIT + Mirage)

Execution abstraction

e Manual encoding: Functors/FCM, OOP, Functions
e Effect System: Free/Freer, Tagless Final, ReaderT
e OCaml User Defined Effects

We picked this for the hype
HOW? P yP

e Trivial reason: Unix, Windows, abstracting over the platform BUT
Drastically facilitates testability (a test-context is just another platform)

Supports exotic target types (ie: GIT + Mirage)
WHY?

Grim's web corner
Notes, essays and ramblings

Exe C ut i o n a b S t raCt i o n Basic dependency injection with objects

Published on 2025-08-18

In his article Why I chose OCaml as my primary language, my friend Xavier Van de Woestyne presents, in the section
Dependency injection and inversion, two approaches to implementing dependency injection: one using user-defined effects
and one using modules as first-class values. Even though I'm quite convinced that both approaches are legit, I find them
sometimes a bit overkill and showing fairly obvious pitfalls when applied to real software. The goal of this article is theref

We define 12 effects

We define 12 effects

type filesystem = [“~Source | "Target]
type Effect.t +=
| Yocaml log
(Logs.src option * ["App | "Error | "Warning | "Info | "Debug] * string)
-> unit Effect.t
| Yocaml failwith : exn -> 'a Effect.t
| Yocaml get time : unit -> int Effect.t
| Yocaml file exists : filesystem * Path.t -> bool Effect.t
| Yocaml read file : filesystem * bool * Path.t -> string Effect.t
| Yocaml get mtime : filesystem * Path.t -> int Effect.t
| Yocaml hash content : string -> string Effect.t
| Yocaml write file : filesystem * Path.t * string -> unit Effect.t
| Yocaml is directory : filesystem * Path.t -> bool Effect.t
| Yocaml read dir : filesystem * Path.t -> Path.fragment list Effect.t
| Yocaml create dir : filesystem * Path.t -> unit Effect.t
| Yocaml exec command
string * string list * (int -> bool)

-> string Effect.t

We define 12 effects

To distinguish between the target and the source
(particularly useful for Git)

type filesystem = [“Source | "Target] me
type Effect.t +=
| Yocaml log
(Logs.src option * ["App | "Error | "Warning | "Info | "Debug] * string)
-> unit Effect.t
| Yocaml failwith : exn -> 'a Effect.t
| Yocaml get time : unit -> int Effect.t
| Yocaml file exists : filesystem * Path.t -> bool Effect.t
| Yocaml read file : filesystem * bool * Path.t -> string Effect.t
| Yocaml get mtime : filesystem * Path.t -> int Effect.t
| Yocaml hash content : string -> string Effect.t
| Yocaml write file : filesystem * Path.t * string -> unit Effect.t
| Yocaml is directory : filesystem * Path.t -> bool Effect.t
| Yocaml read dir : filesystem * Path.t -> Path.fragment list Effect.t
| Yocaml create dir : filesystem * Path.t -> unit Effect.t
| Yocaml exec command
string * string list * (int -> bool)

-> string Effect.t

But effects are not tracked
in the type system!

We abstract the execution that can be implemented with
an Effect Handler.

But effects are not tracked
in the type system!

We abstract the execution that can be implemented with
an Effect Handler.

But effects are not tracked
in the type system!

Without typing, the effect's performance can be leaked.
This forces us to be overly cautious.

We abstract the execution that can be implemented with
an Effect Handler.

But effects are not tracked
in the type system!

Without typing, the effect's performance can be leaked.
This forces us to be overly cautious.

So let's add a naive typing, "may or may not produce an
effect" with an 10 monad.

Here is our Eff module

type 'a t = unit -> 'a

let return x () = x

let bind £ x = £ (x ())

let map £ x = bind (fun m -> return @@ f m) x

let apply ft xt = map (ft ()) xt

let zip x yv = apply (map (fun a b -> (a, b)) x) vy

let perform raw effect =

return (@@ Effect.perform raw effect

module Syntax struct

let (let+) x £ = map f x
let (and+) = zip

let (let*) x £ = bind f x

end

let file exists ~on path =

perform @@ Yocaml file exists (on, path)

Here is our Eff module

t 'a t = unit -> ' i
ype 'a uni = Usual combinators

(for Functor, Applicative and Monad)
let return x () = x

let bind £ x = £ (x ())

let map £ x = bind (fun m -> return @@ f m) x

let apply ft xt = map (ft ()) xt

let zip x yv = apply (map (fun a b -> (a, b)) x) vy

let perform raw effect =

return (@@ Effect.perform raw effect

module Syntax struct

let (let+) x £ = map f x
let (and+) = zip

let (let*) x £ = bind f x

end

let file exists ~on path =

perform @@ Yocaml file exists (on, path)

Here is our Eff module

type 'a t = unit -> 'a .
P Usual combinators

(for Functor, Applicative and Monad)
let return x () = X

let bind £ x = £ (x ())

let map £ x = bind (fun m -> return @@ f m) x

let apply ft xt = map (ft ()) xt

let zip x y = apply (map (fun a b -> (a, b)) x) vy

1 1
return (@@ Effect.perform raw effect a'aEffect.ttoa’at

module Syntax struct

let (let+) x £ = map f x
let (and+) = zip

let (let*) x £ = bind f x

end

let file exists ~on path =

perform @@ Yocaml file exists (on, path)

Here is our Eff module

type 'a t = unit -> 'a .
P Usual combinators

(for Functor, Applicative and Monad)
let return x () = X

let bind £ x = £ (x ())

let map £ x = bind (fun m -> return @@ f m) x

let apply ft xt = map (ft ()) xt

let zip x y = apply (map (fun a b -> (a, b)) x) vy

1 1
return (@@ Effect.perform raw effect a'aEffect.ttoa’at

struct ‘,—-—-<> . . .

we simplify usage with
let (let+) x f = map f x binding operators
let (and+) = zip

let (let*) x £ = bind f x

module Syntax

end

let file exists ~on path =

perform @@ Yocaml file exists (on, path)

Here is our Eff module

type 'a t = unit -> 'a .
P Usual combinators

(for Functor, Applicative and Monad)
let return x () = X

let bind £ x = £ (x ())

let map £ x = bind (fun m -> return @@ f m) x

let apply ft xt = map (ft ()) xt

let zip x y = apply (map (fun a b -> (a, b)) x) vy

1 1
return (@@ Effect.perform raw effect a'aEffect.ttoa’at

struct ‘,—-—-<> . . .

we simplify usage with
let (let+) x f = map f x binding operators
let (and+) = zip

let (let*) x £ = bind f x

module Syntax

end

And we can wrap all our effects with
let file exists ~on path = perfornn

perform @@ Yocaml file exists (on, path)

Here is our Eff module

type 'a t = unit -> 'a .
P Usual combinators

(for Functor, Applicative and Monad)
let return x () = X

let bind £ x = £ (x ())

let map £ x = bind (fun m -> return @@ f m) x

let apply ft xt = map (ft ()) xt

let zip x y = apply (map (fun a b -> (a, b)) x) vy

1 1
return (@@ Effect.perform raw effect a'aEffect.ttoa’at

struct ‘,—-—-<> . . .

we simplify usage with
let (let+) x f = map f x binding operators
let (and+) = zip

let (let*) x £ = bind f x

module Syntax

end

let sample () =
let* exists =
file exists
~on: Source Path.root
in
if exists then
log "File exists"

else log "File does not exists"

And we can wrap all our effects with

let file exists ~on path = /O perform

perform @@ Yocaml file exists (on, path)

We lose the direct style , but we can
distinguish between pure and impure
computation .

We can interpret our “a Eff.t" type programmes by applying our calculation (with a
run function that simply passes () to an expression).

So abstraction over the execution is mostly fixed.

We lose the direct style , but we can
distinguish between pure and impure
computation .

We can interpret our “a Eff.t" type programmes by applying our calculation (with a
run function that simply passes () to an expression).

So abstraction over the execution is mostly fixed.

We lose the direct style , but we can
distinguish between pure and impure
computation

Since we do not really handle the continuation
effect are probably too much

Grim's web corner
Notes, essays and ramblings

Basic dependency injection with objects

Published on 2025-08-18

In his article Why I chose OCaml as my primary language, my friend Xavier Van de Woestyne presents, i
Dependency ﬂ]e(‘tlon and inversion, two approaches to unplementmg dependency injection: one using u
o) s ‘m g D

We can interpret our “a Eff.t" type programmes by applying our calculation (with a
run function that simply passes () to an expression).

So abstraction over the execution is mostly fixed.

We lose the direct style , but we can
distinguish between pure and impure
computation

Since we do not really handle the continuation
effect are probably too much

Grim's web corner

Letls move to dea“ng Wlth Notes, essays and ramblings
metadata validation
Basic dependency injection with objects

Published on 2025-08-18

In his article Why I chose OCaml as my primary language, my friend Xavier Van de Woestyne presents, i
Dependency ﬂ]e(‘tlon and inversion, two approaches to unplementmg dependency injection: one using u
o) s ‘m g D

There are hundreds of
metadata description
languages.

Yaml, ToML, Json,
Sexp, etc.

There are hundreds of
metadata description
languages.

And there are hundreds of
Templates languages

Yaml, ToML, Json,
Sexp, etc.

There are hundreds of
metadata description
languages.

And there are hundreds of
Templates languages

Yaml, ToML, Json,
Sexp, etc.

There are hundreds of
metadata description
languages.

And we probably don't want to lock our potential users
into a choice that is set in stone

And there are hundreds of
Templates languages

Yaml, ToML, Json,
Sexp, etc.

There are hundreds of
metadata description
languages.

And we probably don't want to lock our potential users
into a choice that is set in stone

let's abstract the notion of
Key-Value language (in a naive way)

Yaml

Json

Sexp

-

As templates var

K Validation

Yocaml.Data.t B mm

A

> Article

m _ user option

> integer

-~ I

Yaml

Json

Sexp

-

As templates var

K Validation

Yocaml.Data.t B mm

A

Our generic language

> Article

m _ user option

> integer

-~ I

As templates var :
Our generic language

Yaml 4 K Validation B Article

Json Yocaml.Data.t [== = gl user option

Sexp *
.
-~ T

Even though intermediate representation introduces indirection, we believe it is worthwhile (as
opposed to a module-based implementation).

> integer

A very simple AST that can
describe many things!

type t = private

Null

Bool of bool

Int of int

Float of float
String of string
List of t list

Record of (string *

£)

list

val
val
val
val
val
val
val
val
val
val
val

val

null
bool

int

t
b

in

float

string

list

t

list of

record

option

sum

pair

ool -> t

t -> t

float -> t
string -> t
list -> t

('a -> t) —->

'a list -> t

(string * t) list -> t

('a => t) -> 'a option -> t

('"a => string * t) -> 'a -> t

(

triple

('a => t) -

->

val quad

'a => t) -> ('b

> ('b => t)

('c => t) => 'a * 'b *

('a -> t) -

->

->

> ('b => t)

('c => t) => ('d -> t)

'a

*

'b

val either

('a => t) ->

->

('a,

'b)

1o ok od => ¢

('b => t)
Either.t -> t

-> t)

'c -> t

->

|l a *

'b

-> t

. val null : t .
A very simple AST that can And we associate

describe many things! val bool : bool => & definition with validation

val int : int -> t

val float : float -> t

type t = private val string : string -> t
| Null val list : t list -> t
| Bool of bool val list of : ('a -> t) -> 'a list -> t
| Int of int val record : (string * t) list -> t
| Float of float val option : ('a -> t) -> 'a option -> t
| String of string val sum : ('a -> string * t) -> 'a -> t
| List of t list val pair : ('a => t) => ('b -> t) -> 'a * 'b => ¢
| Record of (string * t) list val triple

('a => t) => ('b -> t)

-> ('c => t) -=> 'a * 'b* 'c -> t
val quad

('a => t) => ('b -> t)

-> ('c => t) -> ('d -> t)

-> 'a * 'b * 'c * 'd ->t

val either

('a => t) => ('b -> t)
-> ('a, 'b) Either.t -> t

. val null : t .
A very simple AST that can And we associate

describe many things! val ool boot => t definition with validation

val int : int =-> t

val float : float -> t

type t = private val string : string -> t
| Null val list : t list -> t
| Bool of bool val list of : ('a -> t) -> 'a list -> t
| Int of int val record : (string * t) list -> t
| Float of float val option : ('a -> t) -> 'a option -> t
| String of string val sum : ('a -> string * t) -> 'a -> t
| List of t list val pair : ('a -> t) => ('b -> t) -> 'a * 'b => ¢
| Record of (string * t) list val triple

('a => t) => ('b -> t)

-> ('c => t) => 'a * 'b * 'c -> t
val quad

('a => t) => ('b -> t)

In practice, even though the API
could be refined, it seems sufficient

-> ('c => t) -> ('d -> t)
(hence the success of JSON). => 'a * 'b * 'c* 'd >t
val either

('a -=> t) -=> ('b -> t)
-> ('a, 'b) Either.t -> t

let validate article =
let open Yocaml.Data.Validation in

record (fun fields ->

let+ title = required fields "title" string
and+ desc = optional fields "description" string
and+ date = required fields "date" Datetime.validate

in make article title desc date

let validate article =
let open Yocaml.Data.Validation in

record (fun fields ->

let+ title = required fields "title" string
and+ desc = optional fields "description" string
and+ date = required fields "date" Datetime.validate

in make article title desc date

(string * Data.t) list .
-> string -> 'a Data.validator -> for collecting all errors

let validate article =
let open Yocaml.Data.Validation in

record (fun fields ->

let+ title = required fields "title" string
and+ desc = optional fields "description" string
and+ date = required fields "date" Datetime.validate

in make article title desc date

Data.t -> .
((string = Data.t) list -> \/0 :,eatiizlr;ol;saregular
'a validated_record) -> :

'a validated_value

let validate article =
let open Yocaml.Data.Validation in

record (fun fields ->

let+ title = required fields "title" string
and+ desc = optional fields "description" string
and+ date = required fields "date" Datetime.validate

in make article title desc date

- Fields are apply in parallel

Data.t -> 'a validator J - validators inside fields are sequentials
-> 'a validated_value (and hold Alternative)

Article.t validator

‘//,———'43 (Data.t -> Article.t validated_value)

let validate article =
let open Yocaml.Data.Validation in

record (fun fields ->

let+ title = required fields "title" string
and+ desc = optional fields "description" string
and+ date = required fields "date" Datetime.validate

in make article title desc date

So we can use validate_article

/o as an other field validator

Article.t validator

‘//,————43 (Data.t -> Article.t validated_value)

let validate article =
let open Yocaml.Data.Validation in

record (fun fields ->

let+ title = required fields "title" string
and+ desc = optional fields "description" string
and+ date = required fields "date" Datetime.validate

in make article title desc date

This gives us a very good insight
into the nuance between
Applicative and monad.

This gives us a very good insight
into the nuance between
Applicative and monad.

Can perform parallel task (allowing
static analysis without dry-run)

This gives us a very good insight
into the nuance between
Applicative and monad.

Can perform sequential task

Can perform parallel task (allowing (and dynamic behaviour)
y i viou

static analysis without dry-run)

This gives us a very good insight
into the nuance between
Applicative and monad.

Can perform sequential task

Can perform parallel task (allowing (and dynamic behaviour)
y i viou

static analysis without dry-run)

We can use Monad to handle pre-condition in
validation (and following by an applicative
pipeline)

Let's talk about minimality

This gives us a very good insight
into the nuance between
Applicative and monad.

Can perform sequential task

Can perform parallel task (allowing (and dynamic behaviour)
y i viou

static analysis without dry-run)

We can use Monad to handle pre-condition in
validation (and following by an applicative
pipeline)

Minimality

Attempt not to perform tasks that do
not need to be performed

Minimality

Attempt not to perform tasks that do
not need to be performed

Minimality

let () =
let file = Sys.argv.(l) in
let file html =

file

| > Filename .basename

|> Filename .remove extension

in

let target = " www/" ~ file html in

let (metadata, content) = File.read file in
let markdown = Markdown.of string content in

let injected =
Template.inject
"article.html"
metadata
markdown

in File.write target injected

let () = We can split the program in 5 task:
compute the target
read the file
let file html = convert it

file inject it using article.html
write the file target

let file = Sys.argv.(l) in

| > Filename .basename

|> Filename .remove extension

in

let target = " www/" ~ file html in

let (metadata, content) = File.read file in
let markdown = Markdown.of string content in

let injected =
Template.inject
"article.html"
metadata
markdown

in File.write target injected

let () =
let file = Sys.argv.(l) in
let file html =

file

| > Filename .basename

|> Filename .remove extension

in

let target = " www/" ~ file html in

let (metadata, content) = File.read file in
let markdown = Markdown.of string content in

let injected =
Template.inject
"article.html"
metadata
markdown

in File.write target injected

We can split the program in 5 task:
compute the target
read the file
convert it
inject it using article.html
write the file target

So the Create File action as 3 task
- read the file
- convertit
- inject it using article.html

And has 2 static dependencies:
- thefile (to be read)
- article.html

let () = We can split the program in 5 task:
compute the target
read the file
let file html = convert it
file inject it using article.html
write the file target

let file = Sys.argv.(l) in

| > Filename .basename

|> Filename .remove extension

in So the Create File action as 3 task
let target = " www/" ~ file html in - read the file

: , , - convertit
let (metadata, content) = File.read file in _ inject it using article.html
let markdown = Markdown.of string content in

And has 2 static dependencies:

o - the file (to be read)
Template.inject - article.html

let injected =

"article.html"
So we need to build the target
IF:
markdown - target does not exists
OR:
mtime(target) <
max(mtime(source), mtime(target))

metadata

in File.write target injected

That leads to:

type (-'in, +'out) task
val create_file : Path.t -> (unit, string) task -> unit

That leads to:

type (-'in, +'out) task
val create_file : Path.t -> (unit, string) task -> unit

where create_file performs the given task only if
it respect the previous heuristic.

That leads to:

Let's define task!

type (-'in, +'out) task
val create_file : Path.t -> (unit, string) task -> unit

where create_file performs the given task only if
it respect the previous heuristic.

type ('a, 'b) task = { let track file file = {

action: ('a -> 'b Eff.t) action = Eff.return

; deps: Deps.t (* A Set of Path*) ; deps = Deps.singleton file
} }
let run {action; } x =

action x

let 1ift £ = {

action = (fun x -> Eff.return (f x))
; deps = Deps.empty

}

type ('a, 'b) task = { let track file file = {
action: ('a -> 'b Eff.t) action = Eff.return

; deps: Deps.t (* A Set of Path*) ; deps = Deps.singleton file
} }

let run {action; } x =

. We can also imagine reading a
action x file

let read file file = {

let 1ift £ = { action = (fun () ->

action = (fun x -> Eff.return (f x)) Eff.read file ~on: Source file)
; deps = Deps.empty ; deps = Deps.singleton file

} }

But hey, we could use "track_file in "read_file no?
How to compose task?

But hey, we could use "track_file in "read_file no?
How to compose task?

let (>>>) tl t2 =
let deps = Deps.concat tl.deps t2.deps in
let action x =

let open Eff.Syntax in

let* y = run tl x in

run t2 y

in

{action; deps}

At this stage, task looks like a
function, but it is not!

At this stage, task looks like a
function, but it is not!

we can sequentially compose task:
t1>>> 12

That will collect statically
dependencies and produce a new task
that will perform t1following by t2

But in fact, by the magic of higher kinded abstraction we
can generate a lot of combinators

At this stage, task looks like a
function, but it is not!

we can sequentially compose task:
t1>>> 12

That will collect statically
dependencies and produce a new task
that will perform t1following by t2

In fact, task is a semigroupoid associated with a
profunctor with a strength tensor &

(also called ... an Arrow)

But in fact, by the magic of higher kinded abstraction we
can generate a lot of combinators

At this stage, task looks like a
function, but it is not!

we can sequentially compose task:
t1>>> 12

That will collect statically
dependencies and produce a new task
that will perform t1following by t2

lb __> lc

'a = 'b

P

la _a

'0\——>'0\—>'b ~—>'&>">’Q$lc

c

-

o___)fo\%%. IQ*IB

‘c ® 'al = |c * 'b

A

*®

‘b« 'd

IB*IQ

All these combinators require us to
programme in pointfree, but they
give us a great deal of control to

create increasingly complex tasks.

An example of task that can
pipe files

Pun [read_File

| <
v
%

X Bilecontent 4

let pipe content filename =
lift (fun x -> %, ())
>> snd (read file filename)

>> 1ift (fun (content a, content b) -> content a * content b)

In practice, we mostly
use >>>, fst and snd.

In practice, we mostly
use >>>, fst and snd.

let process page file =
let file target = Target. (as html pages file) in
let open Task in
Action.Static.write file with metadatafile target
(Pipeline.track file Source.binary
aml yaml.Pipeline.read file with metadata
(module Archetype.Page)
file

this is real world

module Archetype.Page) code'!

(Source.template "page.html")
Yocaml jingoo.Pipeline.as_template
(module Archetype.Page)

(Source.template "layout.html"))

The key idea:

collecting dependencies before
executing the action, and building

an action by composition

But hey, we hate pointfree style !

But hey, we hate pointfree style !

Yes, that's fair! We also have
an applicative API !

let create page source =
let page path =
source
|> Path.move ~into:www
|> Path.change extension "html"
in
let pipeline =
let open Task in
let+ () = track binary
and+ apply templates =
Yocaml jingoo.read templates
Path.[templates / "page.html"
; templates / "layout.html"]
and+ metadata, content =
Yocaml yaml.Pipeline.read file with metadata
(module Archetype.Page)
source
in
content
|> Yocaml markdown.from string to html
|> apply templates (module Archetype.Page) ~metadata
in

Action.Static.write file page path pipeline

under the hood, it still
a task: (unit, 'a) task is
an 'a applicative.

But it is more usable.

let create page source =

let page path =

source
|> Path.move ~into:www

|> Path.change extension "html"

in

let pipeline =

let open Task in
let+ () = track binary
and+ apply templates =
Yocaml jingoo.read templates
Path.[templates / "page.html"
; templates / "layout.html"]
and+ metadata, content =
Yocaml yaml.Pipeline.read file with metadata
(module Archetype.Page)
source
in
content
|> Yocaml markdown.from string to html
|> apply templates (module Archetype.Page) ~metadata
in

Action.Static.write file page path pipeline

but sometimes Arrows give more

control, especially when you want

to compute a state that depends
on the previous task .

The YOCaml API is much richer
than what we have seen and offers a
complete DSL for building static
websites! I really encourage you to
try it out because it's a lot of fun!

The YOCaml API is much richer
than what we have seen and offers a
complete DSL for building static
websites! I really encourage you to
try it out because it's a lot of fun!

https://github.com/xhtmlboi
https://yocaml.github.io/doc
https://yocaml.github.io/tutorial

But YOCaml offers advantages

Now that you understand the key
points behind YOCaml, why use it
and not reinvent the wheel 7

Please, do it! It's so cool to have alternatives

It's maintained

and used by users other than maintainers

It's well documented
API Doc, Guides and Examples

A lot of plugin based on

popular libraries

Markdown, Mustache, Templates, RSS/Atom,
Syntax Highlighting, Git

Features not covered

Dynamic Dependencies, Caches, Snapshots

But the most important part: with or without
YOCaml, maintain your own websites! Less
Medium! More personal websites

(and ideally implemented in OCaml)

The End

Question, Remarks ?

I would be delighted to discuss dynamic dependencies with you privately in order to approximate the

functionality of Xanadu in the Kane project (based on YOCaml).

