
Generating Static Websites
the Functional Programming Way
Xavier Van de Woestyne | xvw.lol | Tarides

Generating Static Websites
the Functional Programming Way
Xavier Van de Woestyne | xvw.lol | Tarides

Making Critical Systems Better
We help our clients build reliable, secure, and
high-performance systems.
We are strongly involved into the OCaml ecosystem)

Generating Static Websites
the Functional Programming Way
Xavier Van de Woestyne | xvw.lol | Tarides

Making Critical Systems Better
We help our clients build reliable, secure, and
high-performance systems.
We are strongly involved into the OCaml ecosystem)

I mainly work on the editor support
(Merlin, LSP, Emacs)

But this presentation has nothing to do
with my work.

Generating Static Websites
the Functional Programming Way
Xavier Van de Woestyne | xvw.lol | Tarides

Making Critical Systems Better
We help our clients build reliable, secure, and
high-performance systems.
We are strongly involved into the OCaml ecosystem)

I mainly work on the editor support
(Merlin, LSP, Emacs)

But this presentation has nothing to do
with my work.

Theory and practice behind a Build-System
approach to static site generation

Generating Static Websites
the Functional Programming Way
Xavier Van de Woestyne | xvw.lol | Tarides

Making Critical Systems Better
We help our clients build reliable, secure, and
high-performance systems.
We are strongly involved into the OCaml ecosystem)

I mainly work on the editor support
(Merlin, LSP, Emacs)

But this presentation has nothing to do
with my work.

Theory and practice behind a Build-System
approach to static site generation

on top of YOCaml !
which has recently finally been

given a tutorial:
https://yocaml.github.io/tutorial

Static site generator?
A tool that processes documents to produce an entire website
without requiring additional server processing to serve pages.
It is therefore a highly specialised build system.)

Static site generator?
A tool that processes documents to produce an entire website
without requiring additional server processing to serve pages.
It is therefore a highly specialised build system.)

● super easy to deploy
● restriction on interaction JAM
● makes trivial things extremely difficult

Static site generator?
A tool that processes documents to produce an entire website
without requiring additional server processing to serve pages.
It is therefore a highly specialised build system.)

● super easy to deploy
● restriction on interaction JAM
● makes trivial things extremely difficult

like backlinks
and transclusion

Static site generator?
A tool that processes documents to produce an entire website
without requiring additional server processing to serve pages.
It is therefore a highly specialised build system.)

● super easy to deploy
● restriction on interaction JAM
● makes trivial things extremely difficult

Why use YOCaml?

like backlinks
and transclusion

Static site generator?
A tool that processes documents to produce an entire website
without requiring additional server processing to serve pages.
It is therefore a highly specialised build system.)

● super easy to deploy
● restriction on interaction JAM
● makes trivial things extremely difficult

Why use YOCaml? ● Please, stop using Medium
● It is highly customizable
● It is fun (and in OCaml)
● It can be a permanent Project
● It is fun 2

like backlinks
and transclusion

Static site generator?
A tool that processes documents to produce an entire website
without requiring additional server processing to serve pages.
It is therefore a highly specialised build system.)

● super easy to deploy
● restriction on interaction JAM
● makes trivial things extremely difficult

Why use YOCaml? ● Please, stop using Medium
● It is highly customizable
● It is fun (and in OCaml)
● It can be a permanent Project
● It is fun 2

The internet is fun when you're building personal websites.
Honestly, The Geocities era is so much better than Medium!

like backlinks
and transclusion

Create a static blog generator is easy

Create a static blog generator is easy

let () =

 let file = Sys.argv.(1) in

 let file_html =

 file

 |> Filename.basename

 |> Filename.remove_extension

 in

 let target = "_www/" ^ file_html in

 let (metadata, content) = File.read file in

 let markdown = Markdown.of_string content in

 let injected =

 Template.inject

 "article.html"

 metadata

 markdown

 in File.write target injected

blog.ml

Create a static blog generator is easy

let () =

 let file = Sys.argv.(1) in

 let file_html =

 file

 |> Filename.basename

 |> Filename.remove_extension

 in

 let target = "_www/" ^ file_html in

 let (metadata, content) = File.read file in

 let markdown = Markdown.of_string content in

 let injected =

 Template.inject

 "article.html"

 metadata

 markdown

 in File.write target injected

blog.ml Makefile

_www/images/%.png: images/%.png

 cp $(<) $(@)

_www/%.css: css/%.png

 cp $(<) $(@)

_www/posts/%.md: _www/%.html

 dune exec blog.exe -- $(<)

Create a static blog generator is easy

let () =

 let file = Sys.argv.(1) in

 let file_html =

 file

 |> Filename.basename

 |> Filename.remove_extension

 in

 let target = "_www/" ^ file_html in

 let (metadata, content) = File.read file in

 let markdown = Markdown.of_string content in

 let injected =

 Template.inject

 "article.html"

 metadata

 markdown

 in File.write target injected

blog.ml Makefile

_www/images/%.png: images/%.png

 cp $(<) $(@)

_www/%.css: css/%.png

 cp $(<) $(@)

_www/posts/%.md: _www/%.html

 dune exec blog.exe -- $(<)

That's it
Let's go further

Program

Program

How to be generic
Execution abstraction with effects and an IO monad.
Data model abstraction with applicative validation.

Program

How to be generic

How to be minimal

Execution abstraction with effects and an IO monad.
Data model abstraction with applicative validation.

Handling Static dependencies using Arrows
Strong Profunctor + Category)

Program

How to be generic

How to be minimal

How to be extensible

Execution abstraction with effects and an IO monad.
Data model abstraction with applicative validation.

Handling Static dependencies using Arrows
Strong Profunctor + Category)

Reasoning behind the extensibility, to integrate features
inspired by the Xanadu project.

If we have time

��

Execution abstraction

Execution abstraction

WHY?

Execution abstraction

WHY?

● Trivial reason: Unix, Windows, abstracting over the platform
● Drastically facilitates testability (a test-context is just another platform)
● Supports exotic target types (ie: GIT  Mirage)

Execution abstraction

WHY?

● Trivial reason: Unix, Windows, abstracting over the platform
● Drastically facilitates testability (a test-context is just another platform)
● Supports exotic target types (ie: GIT  Mirage)

HOW?

Execution abstraction

WHY?

● Trivial reason: Unix, Windows, abstracting over the platform
● Drastically facilitates testability (a test-context is just another platform)
● Supports exotic target types (ie: GIT  Mirage)

HOW?

● Manual encoding: Functors/FCM, OOP, Functions
● Effect System: Free/Freer, Tagless Final, ReaderT
● OCaml User Defined Effects

Execution abstraction

WHY?

● Trivial reason: Unix, Windows, abstracting over the platform
● Drastically facilitates testability (a test-context is just another platform)
● Supports exotic target types (ie: GIT  Mirage)

HOW?

● Manual encoding: Functors/FCM, OOP, Functions
● Effect System: Free/Freer, Tagless Final, ReaderT
● OCaml User Defined Effects

We picked this for the hype

Execution abstraction

WHY?

● Trivial reason: Unix, Windows, abstracting over the platform
● Drastically facilitates testability (a test-context is just another platform)
● Supports exotic target types (ie: GIT  Mirage)

HOW?

● Manual encoding: Functors/FCM, OOP, Functions
● Effect System: Free/Freer, Tagless Final, ReaderT
● OCaml User Defined Effects

We picked this for the hype

BUT

We define 12 effects

type filesystem = [`Source | `Target]

type _ Effect.t +=

 | Yocaml_log :

 (Logs.src option * [`App | `Error | `Warning | `Info | `Debug] * string)

 -> unit Effect.t

 | Yocaml_failwith : exn -> 'a Effect.t

 | Yocaml_get_time : unit -> int Effect.t

 | Yocaml_file_exists : filesystem * Path.t -> bool Effect.t

 | Yocaml_read_file : filesystem * bool * Path.t -> string Effect.t

 | Yocaml_get_mtime : filesystem * Path.t -> int Effect.t

 | Yocaml_hash_content : string -> string Effect.t

 | Yocaml_write_file : filesystem * Path.t * string -> unit Effect.t

 | Yocaml_is_directory : filesystem * Path.t -> bool Effect.t

 | Yocaml_read_dir : filesystem * Path.t -> Path.fragment list Effect.t

 | Yocaml_create_dir : filesystem * Path.t -> unit Effect.t

 | Yocaml_exec_command :

 string * string list * (int -> bool)

 -> string Effect.t

We define 12 effects

type filesystem = [`Source | `Target]

type _ Effect.t +=

 | Yocaml_log :

 (Logs.src option * [`App | `Error | `Warning | `Info | `Debug] * string)

 -> unit Effect.t

 | Yocaml_failwith : exn -> 'a Effect.t

 | Yocaml_get_time : unit -> int Effect.t

 | Yocaml_file_exists : filesystem * Path.t -> bool Effect.t

 | Yocaml_read_file : filesystem * bool * Path.t -> string Effect.t

 | Yocaml_get_mtime : filesystem * Path.t -> int Effect.t

 | Yocaml_hash_content : string -> string Effect.t

 | Yocaml_write_file : filesystem * Path.t * string -> unit Effect.t

 | Yocaml_is_directory : filesystem * Path.t -> bool Effect.t

 | Yocaml_read_dir : filesystem * Path.t -> Path.fragment list Effect.t

 | Yocaml_create_dir : filesystem * Path.t -> unit Effect.t

 | Yocaml_exec_command :

 string * string list * (int -> bool)

 -> string Effect.t

We define 12 effects
To distinguish between the target and the source
(particularly useful for Git)

But effects are not tracked
in the type system!��

But effects are not tracked
in the type system!

We abstract the execution that can be implemented with
an Effect Handler.

��

But effects are not tracked
in the type system!

We abstract the execution that can be implemented with
an Effect Handler.

Without typing, the effect's performance can be leaked.
This forces us to be overly cautious.

��

But effects are not tracked
in the type system!

We abstract the execution that can be implemented with
an Effect Handler.

Without typing, the effect's performance can be leaked.
This forces us to be overly cautious.

So let's add a naive typing, "may or may not produce an
effect" with an IO monad. �

�

��

type 'a t = unit -> 'a

let return x () = x

let bind f x = f (x ())

let map f x = bind (fun m -> return @@ f m) x

let apply ft xt = map (ft ()) xt

let zip x y = apply (map (fun a b -> (a, b)) x) y

let perform raw_effect =

 return @@ Effect.perform raw_effect

module Syntax = struct

 let (let+) x f = map f x

 let (and+) = zip

 let (let*) x f = bind f x

end

let file_exists ~on path =

 perform @@ Yocaml_file_exists (on, path)

Here is our Eff module

type 'a t = unit -> 'a

let return x () = x

let bind f x = f (x ())

let map f x = bind (fun m -> return @@ f m) x

let apply ft xt = map (ft ()) xt

let zip x y = apply (map (fun a b -> (a, b)) x) y

let perform raw_effect =

 return @@ Effect.perform raw_effect

module Syntax = struct

 let (let+) x f = map f x

 let (and+) = zip

 let (let*) x f = bind f x

end

let file_exists ~on path =

 perform @@ Yocaml_file_exists (on, path)

Usual combinators
(for Functor, Applicative and Monad)

Here is our Eff module

type 'a t = unit -> 'a

let return x () = x

let bind f x = f (x ())

let map f x = bind (fun m -> return @@ f m) x

let apply ft xt = map (ft ()) xt

let zip x y = apply (map (fun a b -> (a, b)) x) y

let perform raw_effect =

 return @@ Effect.perform raw_effect

module Syntax = struct

 let (let+) x f = map f x

 let (and+) = zip

 let (let*) x f = bind f x

end

let file_exists ~on path =

 perform @@ Yocaml_file_exists (on, path)

Usual combinators
(for Functor, Applicative and Monad)

since 'a t is abstract, we can lift
a 'a Effect.t to a 'a t

Here is our Eff module

type 'a t = unit -> 'a

let return x () = x

let bind f x = f (x ())

let map f x = bind (fun m -> return @@ f m) x

let apply ft xt = map (ft ()) xt

let zip x y = apply (map (fun a b -> (a, b)) x) y

let perform raw_effect =

 return @@ Effect.perform raw_effect

module Syntax = struct

 let (let+) x f = map f x

 let (and+) = zip

 let (let*) x f = bind f x

end

let file_exists ~on path =

 perform @@ Yocaml_file_exists (on, path)

Usual combinators
(for Functor, Applicative and Monad)

since 'a t is abstract, we can lift
a 'a Effect.t to a 'a t

we simplify usage with
binding operators

Here is our Eff module

type 'a t = unit -> 'a

let return x () = x

let bind f x = f (x ())

let map f x = bind (fun m -> return @@ f m) x

let apply ft xt = map (ft ()) xt

let zip x y = apply (map (fun a b -> (a, b)) x) y

let perform raw_effect =

 return @@ Effect.perform raw_effect

module Syntax = struct

 let (let+) x f = map f x

 let (and+) = zip

 let (let*) x f = bind f x

end

let file_exists ~on path =

 perform @@ Yocaml_file_exists (on, path)

Usual combinators
(for Functor, Applicative and Monad)

since 'a t is abstract, we can lift
a 'a Effect.t to a 'a t

we simplify usage with
binding operators

And we can wrap all our effects with
perform

Here is our Eff module

type 'a t = unit -> 'a

let return x () = x

let bind f x = f (x ())

let map f x = bind (fun m -> return @@ f m) x

let apply ft xt = map (ft ()) xt

let zip x y = apply (map (fun a b -> (a, b)) x) y

let perform raw_effect =

 return @@ Effect.perform raw_effect

module Syntax = struct

 let (let+) x f = map f x

 let (and+) = zip

 let (let*) x f = bind f x

end

let file_exists ~on path =

 perform @@ Yocaml_file_exists (on, path)

Usual combinators
(for Functor, Applicative and Monad)

since 'a t is abstract, we can lift
a 'a Effect.t to a 'a t

we simplify usage with
binding operators

And we can wrap all our effects with
perform

let sample () =

 let* exists =

 file_exists

 ~on:`Source Path.root

 in

 if exists then

 log "File exists"

 else log "File does not exists"

Here is our Eff module

We lose the direct style , but we can
distinguish between pure and impure

computation .

We lose the direct style , but we can
distinguish between pure and impure

computation .

We can interpret our “a Eff.tˮ type programmes by applying our calculation (with a
run function that simply passes () to an expression).

So abstraction over the execution is mostly fixed.

We lose the direct style , but we can
distinguish between pure and impure

computation .
Since we do not really handle the continuation
effect are probably too much

We can interpret our “a Eff.tˮ type programmes by applying our calculation (with a
run function that simply passes () to an expression).

So abstraction over the execution is mostly fixed.

We lose the direct style , but we can
distinguish between pure and impure

computation .
Since we do not really handle the continuation
effect are probably too much

We can interpret our “a Eff.tˮ type programmes by applying our calculation (with a
run function that simply passes () to an expression).

So abstraction over the execution is mostly fixed.

Let's move to dealing with
metadata validation

There are hundreds of
metadata description

languages.

There are hundreds of
metadata description

languages.

Yaml, ToML, Json,
Sexp, etc.

There are hundreds of
metadata description

languages.

Yaml, ToML, Json,
Sexp, etc.

And there are hundreds of
Templates languages

There are hundreds of
metadata description

languages.

Yaml, ToML, Json,
Sexp, etc.

And we probably don't want to lock our potential users
into a choice that is set in stone

And there are hundreds of
Templates languages

There are hundreds of
metadata description

languages.

Yaml, ToML, Json,
Sexp, etc.

And we probably don't want to lock our potential users
into a choice that is set in stone

let's abstract the notion of
Key-Value language (in a naive way)

And there are hundreds of
Templates languages

Yaml

Json

Sexp

Etc.

Yocaml.Data.t

Validation

Projection

Article

user option

integer

Etc.

As templates var

Yaml

Json

Sexp

Etc.

Yocaml.Data.t

Validation

Projection

Article

user option

integer

Etc.

As templates var Our generic language

Yaml

Json

Sexp

Etc.

Yocaml.Data.t

Validation

Projection

Article

user option

integer

Etc.

As templates var Our generic language

Even though intermediate representation introduces indirection, we believe it is worthwhile (as
opposed to a module-based implementation).

type t = private

 | Null

 | Bool of bool

 | Int of int

 | Float of float

 | String of string

 | List of t list

 | Record of (string * t) list

val null : t

val bool : bool -> t

val int : int -> t

val float : float -> t

val string : string -> t

val list : t list -> t

val list_of : ('a -> t) -> 'a list -> t

val record : (string * t) list -> t

val option : ('a -> t) -> 'a option -> t

val sum : ('a -> string * t) -> 'a -> t

val pair : ('a -> t) -> ('b -> t) -> 'a * 'b -> t

val triple :

 ('a -> t) -> ('b -> t)

 -> ('c -> t) -> 'a * 'b * 'c -> t

val quad :

 ('a -> t) -> ('b -> t)

 -> ('c -> t) -> ('d -> t)

 -> 'a * 'b * 'c * 'd -> t

 val either :

('a -> t) -> ('b -> t)

-> ('a, 'b) Either.t -> t

A very simple AST that can
describe many things!

type t = private

 | Null

 | Bool of bool

 | Int of int

 | Float of float

 | String of string

 | List of t list

 | Record of (string * t) list

val null : t

val bool : bool -> t

val int : int -> t

val float : float -> t

val string : string -> t

val list : t list -> t

val list_of : ('a -> t) -> 'a list -> t

val record : (string * t) list -> t

val option : ('a -> t) -> 'a option -> t

val sum : ('a -> string * t) -> 'a -> t

val pair : ('a -> t) -> ('b -> t) -> 'a * 'b -> t

val triple :

 ('a -> t) -> ('b -> t)

 -> ('c -> t) -> 'a * 'b * 'c -> t

val quad :

 ('a -> t) -> ('b -> t)

 -> ('c -> t) -> ('d -> t)

 -> 'a * 'b * 'c * 'd -> t

 val either :

('a -> t) -> ('b -> t)

-> ('a, 'b) Either.t -> t

A very simple AST that can
describe many things!

And we associate
definition with validation

type t = private

 | Null

 | Bool of bool

 | Int of int

 | Float of float

 | String of string

 | List of t list

 | Record of (string * t) list

val null : t

val bool : bool -> t

val int : int -> t

val float : float -> t

val string : string -> t

val list : t list -> t

val list_of : ('a -> t) -> 'a list -> t

val record : (string * t) list -> t

val option : ('a -> t) -> 'a option -> t

val sum : ('a -> string * t) -> 'a -> t

val pair : ('a -> t) -> ('b -> t) -> 'a * 'b -> t

val triple :

 ('a -> t) -> ('b -> t)

 -> ('c -> t) -> 'a * 'b * 'c -> t

val quad :

 ('a -> t) -> ('b -> t)

 -> ('c -> t) -> ('d -> t)

 -> 'a * 'b * 'c * 'd -> t

 val either :

('a -> t) -> ('b -> t)

-> ('a, 'b) Either.t -> t

A very simple AST that can
describe many things!

In practice, even though the API
could be refined, it seems sufficient
(hence the success of JSON.

And we associate
definition with validation

let validate_article =

 let open Yocaml.Data.Validation in

 record (fun fields ->

 let+ title = required fields "title" string

 and+ desc = optional fields "description" string

 and+ date = required fields "date" Datetime.validate

 in make_article title desc date

)

let validate_article =

 let open Yocaml.Data.Validation in

 record (fun fields ->

 let+ title = required fields "title" string

 and+ desc = optional fields "description" string

 and+ date = required fields "date" Datetime.validate

 in make_article title desc date

)

(string * Data.t) list
 -> string -> 'a Data.validator ->
 -> ('a, SEMIGROUP) Result.t

for collecting all errors

let validate_article =

 let open Yocaml.Data.Validation in

 record (fun fields ->

 let+ title = required fields "title" string

 and+ desc = optional fields "description" string

 and+ date = required fields "date" Datetime.validate

 in make_article title desc date

)

Data.t ->
 ((string * Data.t) list ->
 'a validated_record) ->
 'a validated_value

record is a regular
validator.

let validate_article =

 let open Yocaml.Data.Validation in

 record (fun fields ->

 let+ title = required fields "title" string

 and+ desc = optional fields "description" string

 and+ date = required fields "date" Datetime.validate

 in make_article title desc date

)

Data.t -> 'a validator
-> 'a validated_value

- Fields are apply in parallel
- validators inside fields are sequentials

(and hold Alternative)

let validate_article =

 let open Yocaml.Data.Validation in

 record (fun fields ->

 let+ title = required fields "title" string

 and+ desc = optional fields "description" string

 and+ date = required fields "date" Datetime.validate

 in make_article title desc date

)

Article.t validator
(Data.t -> Article.t validated_value)

let validate_article =

 let open Yocaml.Data.Validation in

 record (fun fields ->

 let+ title = required fields "title" string

 and+ desc = optional fields "description" string

 and+ date = required fields "date" Datetime.validate

 in make_article title desc date

)

So we can use validate_article
as an other field validator

Article.t validator
(Data.t -> Article.t validated_value)

This gives us a very good insight
into the nuance between
Applicative and monad.

This gives us a very good insight
into the nuance between
Applicative and monad.

Can perform parallel task (allowing
static analysis without dry-run)

This gives us a very good insight
into the nuance between
Applicative and monad.

Can perform parallel task (allowing
static analysis without dry-run)

Can perform sequential task
(and dynamic behaviour)

This gives us a very good insight
into the nuance between
Applicative and monad.

Can perform parallel task (allowing
static analysis without dry-run)

Can perform sequential task
(and dynamic behaviour)

We can use Monad to handle pre-condition in
validation (and following by an applicative

pipeline)

This gives us a very good insight
into the nuance between
Applicative and monad.

Can perform parallel task (allowing
static analysis without dry-run)

Can perform sequential task
(and dynamic behaviour)

We can use Monad to handle pre-condition in
validation (and following by an applicative

pipeline)

Let's talk about minimality

Minimality

Minimality

Attempt not to perform tasks that do
not need to be performed

Minimality

Attempt not to perform tasks that do
not need to be performed

let () =

 let file = Sys.argv.(1) in

 let file_html =

 file

 |> Filename.basename

 |> Filename.remove_extension

 in

 let target = "_www/" ^ file_html in

 let (metadata, content) = File.read file in

 let markdown = Markdown.of_string content in

 let injected =

 Template.inject

 "article.html"

 metadata

 markdown

 in File.write target injected

let () =

 let file = Sys.argv.(1) in

 let file_html =

 file

 |> Filename.basename

 |> Filename.remove_extension

 in

 let target = "_www/" ^ file_html in

 let (metadata, content) = File.read file in

 let markdown = Markdown.of_string content in

 let injected =

 Template.inject

 "article.html"

 metadata

 markdown

 in File.write target injected

We can split the program in 5 task:
- compute the target
- read the file
- convert it
- inject it using article.html
- write the file target

let () =

 let file = Sys.argv.(1) in

 let file_html =

 file

 |> Filename.basename

 |> Filename.remove_extension

 in

 let target = "_www/" ^ file_html in

 let (metadata, content) = File.read file in

 let markdown = Markdown.of_string content in

 let injected =

 Template.inject

 "article.html"

 metadata

 markdown

 in File.write target injected

We can split the program in 5 task:
- compute the target
- read the file
- convert it
- inject it using article.html
- write the file target

So the Create File action as 3 task
- read the file
- convert it
- inject it using article.html

And has 2 static dependencies:
- the file (to be read)
- article.html

let () =

 let file = Sys.argv.(1) in

 let file_html =

 file

 |> Filename.basename

 |> Filename.remove_extension

 in

 let target = "_www/" ^ file_html in

 let (metadata, content) = File.read file in

 let markdown = Markdown.of_string content in

 let injected =

 Template.inject

 "article.html"

 metadata

 markdown

 in File.write target injected

We can split the program in 5 task:
- compute the target
- read the file
- convert it
- inject it using article.html
- write the file target

So the Create File action as 3 task
- read the file
- convert it
- inject it using article.html

And has 2 static dependencies:
- the file (to be read)
- article.html

So we need to build the target
IF

- target does not exists
OR
mtime(target) <
 max(mtime(source), mtime(target))

That leads to:

type (-'in, +'out) task
val create_file : Path.t -> (unit, string) task -> unit

That leads to:

type (-'in, +'out) task
val create_file : Path.t -> (unit, string) task -> unit

where create_file performs the given task only if
it respect the previous heuristic.

That leads to:

type (-'in, +'out) task
val create_file : Path.t -> (unit, string) task -> unit

where create_file performs the given task only if
it respect the previous heuristic.

Let's define task!

type ('a, 'b) task = {

 action: ('a -> 'b Eff.t)

; deps: Deps.t (* A Set of Path*)

}

let run {action; _} x =

 action x

let lift f = {

 action = (fun x -> Eff.return (f x))

; deps = Deps.empty

}

let track_file file = {

 action = Eff.return

; deps = Deps.singleton file

}

type ('a, 'b) task = {

 action: ('a -> 'b Eff.t)

; deps: Deps.t (* A Set of Path*)

}

let run {action; _} x =

 action x

let lift f = {

 action = (fun x -> Eff.return (f x))

; deps = Deps.empty

}

let track_file file = {

 action = Eff.return

; deps = Deps.singleton file

}

We can also imagine reading a
file

let read_file file = {

 action = (fun () ->

 Eff.read_file ~on:`Source file)

; deps = Deps.singleton file

}

But hey, we could use `track_file` in `read_file` no?
How to compose task?

But hey, we could use `track_file` in `read_file` no?
How to compose task?

let (>>>) t1 t2 =

 let deps = Deps.concat t1.deps t2.deps in

 let action x =

 let open Eff.Syntax in

 let* y = run t1 x in

 run t2 y

 in

 {action; deps}

At this stage, task looks like a
function, but it is not!

At this stage, task looks like a
function, but it is not!

we can sequentially compose task:
t1 >>> t2

That will collect statically
dependencies and produce a new task
that will perform t1 following by t2

At this stage, task looks like a
function, but it is not!

we can sequentially compose task:
t1 >>> t2

That will collect statically
dependencies and produce a new task
that will perform t1 following by t2

But in fact, by the magic of higher kinded abstraction we
can generate a lot of combinators

At this stage, task looks like a
function, but it is not!

we can sequentially compose task:
t1 >>> t2

That will collect statically
dependencies and produce a new task
that will perform t1 following by t2

But in fact, by the magic of higher kinded abstraction we
can generate a lot of combinators

In fact, task is a semigroupoid associated with a
profunctor with a strength tensor 😂

(also called … an Arrow)

All these combinators require us to
programme in pointfree, but they
give us a great deal of control to

create increasingly complex tasks.

An example of task that can
pipe files

let pipe_content filename =

 lift (fun x -> x, ())

 >> snd (read_file filename)

 >> lift (fun (content_a, content_b) -> content_a ^ content_b)

In practice, we mostly
use >>>, fst and snd.

In practice, we mostly
use >>>, fst and snd.

let process_page file =

 let file_target = Target.(as_html pages file) in

 let open Task in

 Action.Static.write_file_with_metadata file_target

 (Pipeline.track_file Source.binary

 >>> Yocaml_yaml.Pipeline.read_file_with_metadata

 (module Archetype.Page)

 file

 >>> Yocaml_omd.content_to_html ()

 >>> Yocaml_jingoo.Pipeline.as_template

 (module Archetype.Page)

 (Source.template "page.html")

 >>> Yocaml_jingoo.Pipeline.as_template

 (module Archetype.Page)

 (Source.template "layout.html"))

this is real world
code !

The key idea:
collecting dependencies before
executing the action, and building

an action by composition

But hey, we hate pointfree style !

But hey, we hate pointfree style !
Yes, that's fair! We also have
an applicative API !

let create_page source =

 let page_path =

 source

 |> Path.move ~into:www

 |> Path.change_extension "html"

 in

 let pipeline =

 let open Task in

 let+ () = track_binary

 and+ apply_templates =

 Yocaml_jingoo.read_templates

 Path.[templates / "page.html"

 ; templates / "layout.html"]

 and+ metadata, content =

 Yocaml_yaml.Pipeline.read_file_with_metadata

 (module Archetype.Page)

 source

 in

 content

 |> Yocaml_markdown.from_string_to_html

 |> apply_templates (module Archetype.Page) ~metadata

 in

 Action.Static.write_file page_path pipeline

let create_page source =

 let page_path =

 source

 |> Path.move ~into:www

 |> Path.change_extension "html"

 in

 let pipeline =

 let open Task in

 let+ () = track_binary

 and+ apply_templates =

 Yocaml_jingoo.read_templates

 Path.[templates / "page.html"

 ; templates / "layout.html"]

 and+ metadata, content =

 Yocaml_yaml.Pipeline.read_file_with_metadata

 (module Archetype.Page)

 source

 in

 content

 |> Yocaml_markdown.from_string_to_html

 |> apply_templates (module Archetype.Page) ~metadata

 in

 Action.Static.write_file page_path pipeline

under the hood, it still
a task: (unit, 'a) task is
an 'a applicative.

But it is more usable.

but sometimes Arrows give more
control , especially when you want
to compute a state that depends

on the previous task .

The YOCaml API is much richer
than what we have seen and offers a

complete DSL for building static
websites! I really encourage you to
try it out because it's a lot of fun!

The YOCaml API is much richer
than what we have seen and offers a

complete DSL for building static
websites! I really encourage you to
try it out because it's a lot of fun!

- https://github.com/xhtmlboi
- https://yocaml.github.io/doc
- https://yocaml.github.io/tutorial

https://github.com/xhtmlboi
https://yocaml.github.io/doc
https://yocaml.github.io/tutorial

Now that you understand the key
points behind YOCaml, why use it

and not reinvent the wheel ?
Please, do it! It's so cool to have alternatives

But YOCaml offers advantages

It's maintained
and used by users other than maintainers

��

It's well documented
API Doc, Guides and Examples

��

A lot of plugin based on
popular libraries

Markdown, Mustache, Templates, RSS/Atom,
Syntax Highlighting, Git

��

Features not covered
Dynamic Dependencies, Caches, Snapshots

��

But the most important part: with or without
YOCaml , maintain your own websites! Less

Medium! More personal websites
(and ideally implemented in OCaml)

��

The End
Question, Remarks ?

I would be delighted to discuss dynamic dependencies with you privately in order to approximate the
functionality of Xanadu in the Kane project (based on YOCaml).

