
Compiler Hacking 101: Runtime Types
A hands-on approach

Nicolás Ojeda Bär, nicolas.ojeda.bar@lexifi.com
FUN OCaml, September 16, 2025, Warsaw

1

$ git clone https://github.com/ocaml/ocaml
$ cd ocaml
$./configure --disable-native-compiler \

--disable-ocamlobjinfo --disable-ocamldoc \
--disable-ocamldebug --disable-ocamltest \
--disable-unix-lib --disable-str-lib

$ make -j
$ rlwrap runtime/ocamlrun ./ocaml -I stdlib

2

Compiler Quickstart

The OCaml compiler follows a standard organization in multiple stages, gradually translating the
input source code into something that can be executed in the target architecture. Its frontend is
composed roughly of the following phases:

• Parsing: source code → AST (Parsetree, Parser)
• Typechecking: AST → Type-annotated AST (Typedtree, Typecore, Typemod, etc)
• Translation: Type-annotated AST → Untyped Lambda Calculus (Lambda, Translcore,

Translmod, etc)

After Lambda, there are two possible continuations: generate bytecode for the OCaml VM
(ocamlrun) or native code, in which case a much longer pipeline comes into play: closure
conversion, inlining, instruction selection, register allocation, etc.

3

Parsing

The AST type is defined in Parsetree. Many of you are probably familiar with it because it is
used (unfortunately :)) in ppxlib. The parser is built using Menhir (see parser.mly). The
structure of the AST is as follows:

type expression =
{ pexp_desc: expression_desc;

pexp_loc: Location.t;
... }

type expression_desc =
| Pexp_ident of Longident.t loc
| ... (* one case per type of expression *)

Each node is annotated with a location. Paths are represented by Longident (show). AST
construction helpers in Ast_helper (show). Location annotation via 'a loc, mkloc, mknoloc
(show).

The -dparsetree flag can be used to examine the AST. Extension points are represented by
Pexp_extension (show).

4

Typechecking

Typechecking is the most complicated part of the compiler (luckily we won’t have to mess with
it). It takes an AST as before and converts it to a “typed AST” (defined in Typedtree) where
each term is annotated with its type, detecting any type errors along the way. The structured of
the Typed AST is similar to that of the plain AST:

type expression =
{ exp_desc: expression_desc;

exp_type: type_expr;
exp_env: Env.t;
... }

and expression_desc =
| Texp_ident of Path.t * ...
| ... (* one case per type of expression *)

The field exp_type contains the type of the expression, and exp_env the environment (an
immutable data structure) used to typecheck the expression.

The -dtypedtree flag can be used to examine the AST.

5

Type expressions

Types are defined in Types and are represented by type_expr. This is a mutable graph-like
data structure, where unification is achieved by in-place mutation of shared subterms.

The structure of the type is accessed using Types.get_desc: type_expr -> type_desc:

type type_desc =
| Tvar of ... (* 'a *)
| Tarrow of arg_label * type_expr * type_expr * ... (* l:t1 -> t2 *)
| Ttuple of type_expr list (* t1 * ... * tN *)
| Tconstr of Path.t * type_expr list * ... (* (t1, ..., tN) constr *)
| ...

A type constructor has a definition that can be looked up in the current environment using
Env.find_type: Path.t -> Env.t -> Types.type_declaration (show).

6

Runtime representation

All OCaml values are represented at runtime by a word-size integer. This integer is, either:

• a value, for integer-like objects (int, char, bool, constant constructors, etc)
• a pointer to a heap-allocated block of a number of fields. Such a block has a byte-sized tag,

which specifies the “type” of the block.

See also https://dev.realworldocaml.org/runtime-memory-layout.html.

Manipulate the runtime representation by using the Obj module (careful: unsafe!).

• Obj.repr: 'a -> Obj.t (into the wilderness), Obj.obj: Obj.t -> 'a (back to
civilization)

• Obj.is_int: Obj.t -> bool, Obj.is_block: Obj.t -> bool
• Obj.size: Obj.t -> int, Obj.tag: Obj.t -> int, Obj.field: Obj.t -> int ->

Obj.t

(show)

7

Translation down to Lambda language

After typechecking, the typed AST is translated down to a much simpler untyped lambda
calculus: pattern matching (→ decision tree of elementary tests), modules (→ records of value
components), type information is discarded and the uniform value representation is used (a tuple,
a record, a constructor are all treated the same way).

The -dlambda flag can be used to examine the Lambda representation (show).

Try entering the following in the toplevel with -dlambda:

let f = function
| Ok (Ok x) -> x + 1 | Ok (Error _) -> -1 | Error s -> failwith (s ˆ s);;

type t = {a: int; b: t option};;
{a = 42; b = Some {a = 101; b = None}};;
[42; 101];;
(42, (101, false));;
module _ = struct type t = int let f = fst type s = char let g = snd end;;
(fst, snd);;

8

(Toy) Runtime Types

Our objective is a “function” show: 'a -> unit that will print a textual representation of an
arbitrary value on standard output (initially, just integers and strings). We will proceed in 7
steps, corresponding to 4 tasks:

1. Extend the standard library with a definition of type witnesses (step 1)
2. Define an operator [%t: T] to build type witnesses (steps 2-5)
3. Write the show function (step 6)
4. Insert type witnesses automatically (step 7)

The API we will implement will be unsafe. Building a safe API on top of it is not very difficult,
but requires some GADT gymnastics. If time allows, I will explain what one possible such API
can look like.

9

The source code for what follows is available as a series of commits in the trunk branch of
https://github.com/LexiFi/fun-ocaml-2025, based off commit
53643702ef0345ae5fd1d3f0a10774149f819bf5 of the upstream compiler.

10

Step 1. Extend the standard library

type.ml

type stype =
| Int
| String

type 'a ttype = stype
let stype_of_ttype ty = ty

type.mli

type stype =
| Int
| String

type 'a ttype
val stype_of_ttype: 'a ttype -> stype

11

Step 2. The [%t: T] operator

typecore.ml, function type_expect_

match sexp.pexp_desc with
| Pexp_extension ({txt="t"}, PTyp ct) -> (* [%t: ct] *)

let sexp = (* (assert false : ct ttype) *)
let open Ast_helper in
let open Location in
Exp.constraint_

(Exp.assert_ (Exp.construct (mknoloc (Longident.Lident "false")) None))
(Typ.constr

(mknoloc (Longident.Ldot (mknoloc (Longident.Lident "Stdlib__Type"),
mknoloc "ttype"))) [ct])

in
type_expect env sexp ty_expected_explained

| Pexp_ident lid ->

12

Step 3. The [%t: T] operator: building type witnesses

translcore.ml

exception Unsupported of type_expr
let () =

Location.register_error_of_exn (function
| Unsupported ty ->

Some (Location.errorf "Unsupported type: %a" Printtyp.Doc.type_expr ty)
| _ -> None

)

let stype_of_type ty =
match get_desc ty with
| Tconstr(path, [], _) when Path.same path Predef.path_int -> Type.Int
| Tconstr(path, [], _) when Path.same path Predef.path_string -> Type.String
| _ -> raise (Unsupported ty)

13

Step 4. The [%t: T] operator

Tu “unmask” the trojan horse, we need to be able to decide if a type is of the form T ttype.

typeopt.mli

val is_ttype: Env.t -> Types.type_expr -> Types.type_expr option

typeopt.ml

let ttype_path =
Path.Pdot (Path.Pident (Ident.create_persistent "Stdlib__Type"), "ttype")

let is_ttype env ty =
match scrape env ty with
| Some (Tconstr(p, [ty], _)) when Path.same p ttype_path -> Some ty
| _ -> None

14

Step 5. The [%t: T] operator

translcore.ml

let is_ttype_of e =
match e.exp_desc with
| Texp_assert _ -> Typeopt.is_ttype e.exp_env e.exp_type
| _ -> None

let rec const_obj (obj : Obj.t) : structured_constant =
assert (Obj.is_int obj);
Const_base (Const_int (Obj.obj obj))

translcore.ml

and transl_exp0 ~in_new_scope ~scopes e =
match is_ttype_of e with
| Some ty ->

Lconst (const_obj (Obj.repr (stype_of_type ty)))
| None ->
match e.exp_desc with

15

Type.stype_of_ttype [%t: int];;
Type.stype_of_ttype [%t: string];;
Type.stype_of_ttype [%t: int * string];;
Type.stype_of_ttype [%t: 'a];;
let tt : int Type.ttype = [%t: _];;

16

Step 6. The show function:

let show (t: 'a Type.ttype) (x: 'a) : unit =
let x = Obj.repr x in
match Type.stype_of_ttype t with
| Int -> print_int (Obj.obj x)
| String -> Printf.printf "%S" (Obj.obj x)

The use of Obj shows that the current API is unsafe. It is possible to build a safe API on top of
this unsafe one using GADTs. Note that the show function is nonetheless safe for its callers.

17

use "show.ml";;
show [%t: int] 42;;
show [%t: string] "FUN OCaml";;

then

show [%t: _] "FUN OCaml";;

Wouldn’t it be nice to have the compiler insert the ~t:[%t: _] argument by itself?

18

Step 7. Automatic insertion of type witnesses

typecore.ml, function collect_apply_args

| None ->
let `Arrow (ty_arg, _, _, _) = arrow_kind in
match Typeopt.is_ttype env ty_arg with
| Some _ when not optional && label_name l <> "" ->
let sarg =

let open Ast_helper in
let open Location in
let open Longident in
Exp.constraint_

(Exp.assert_ (Exp.construct (mknoloc (Lident "false")) None))
(Typ.constr (mknoloc (Ldot (mknoloc (Lident "Stdlib__Type"),

mknoloc "ttype"))) [Typ.any ()])
in
sargs, Some (sarg, l), TypeSet.empty, false
| _ ->
if TypeSet.mem ty_fun visited then 19

#use "show.ml";;
show 42;;
show "FUN OCaml!";;

20

Break

I hope I didn’t lose anyone along the way. If you leave this workshop having understood what we
did so far, for my part, I will consider it a success.

If you are ambitious and want to go further, there are some TODOs in the next slides that you
can try your hand at. I will approach some of them after the break.

21

TODO

• Write a function Type.equal: 'a ttype -> 'b ttype -> ('a, 'b) Type.eq
option

• Make use of this feature: show, to_json, of_json, to_gui, etc.

• Extend the universe of types covered: labelled tuples, record types, variant types, unboxed
types, float arrays and records, inline records, functions, objects, . . .

• Handle recursive types: will need to adapt compilation scheme. One possibility is to build a
cyclic type witness at compilation time, use Marshal to dump it in the generated
compilation unit, and unmarshal it at runtime.

• Better error messages (eg include locations)

22

• Optimize the compilation scheme: share type witnesses, unserialize once per compilation
unit if using Marshal.

• If Type.equal impelements structural semantics, try implementing nominal semantics
instead. You will need to record a unique name for each structural type.

• Implement the following strategy for abstract types: when trying to build a type witness of
an abstract type t if there is a value of the same name t of type t ttype, then use it as a
witness.

23

A safe API

The API that we exposed before is unsafe: when writing functions that match on the stype
datatype, one needs to use Obj, which invalidates all soundness guarantees. It is easy to make a
mistake and cause a segmentation fault.

One can, however, build a safe API on top of the unsafe one. The proposed interface makes use
of some simple GADTs. The implementation is actually pretty simple if you have understood
what we have done so far, so I will only give the interface.

24

Enter the GADTs

type _ xtype =
| Unit : unit xtype
| Int : int xtype
| String : string xtype
| List : 'a ttype -> 'a list xtype
| Record : 'a Record.t -> 'a xtype
| Sum : 'a Sum.t -> 'a xtype
| ...

val xtype_of_ttype: 'a ttype -> 'a xtype

25

Type-safe show

let rec show: type t. t:t ttype -> t -> unit = fun ~t x ->
(* Look Ma! No Obj! *)
match xtype_of_ttype t with
| Unit -> print_string "()"
| Int -> print_int x
| String -> Printf.printf "%S" x
| List t ->

print_char '[';
List.iteri (fun i x -> if i > 0 then print_string ", "; show ~t x) x;
print_char ']'

| ...

26

Records

module RecordField: sig
type ('a, 'b) t
val name: ('a, 'b) t -> string
val ttype: ('a, 'b) t -> 'b ttype
val get: ('a, 'b) t -> 'a -> 'b

end

type _ field = Field: ('a, 'b) RecordField.t -> 'a field

module Record: sig
type 'a t
val fields: 'a t -> 'a field list

end

27

let rec show: type t. t:t ttype -> t -> unit = fun ~t x ->
match xtype_of_ttype t with
| Record r ->

print_char '{';
List.iteri (fun i (Field rf) ->

if i > 0 then print_string "; ";
print_string (RecordField.name rf);
print_char " = ";
show (RecordField.ttype rf) (RecordField.get rf x)

) (Record.fields r);
print_char '}'

| ...

28

Tuples

type _ xtype =
| Tuple: 'a Record.t -> 'a xtype
| ...

29

let rec show: type t: t:t ttype -> t -> unit = fun ~t x ->
match xtype_of_ttype t with
| Tuple r ->

print_char '(';
List.iteri (fun i (Field rf) ->

if i > 0 then print_string ", ";
show ~t:(RecordField.ttype rf) (RecordField.get rf x)

) (Record.fields r);
print_char ')'

| ...

30

Sums

module Constructor: sig
type ('a, 'b) t
val name: ('a, 'b) t -> string
val ttype: ('a, 'b) t -> 'b ttype
(* constant constructor have 'b = unit, otherwise 'b = tuple type *)
val project_exn: ('a, 'b) t -> 'a -> 'b

end

type _ constructor = Constructor: ('a, 'b) Constructor.t -> 'a constructor

module Sum: sig
type 'a t
val constructors: 'a t -> 'a constructor list
val constructor: 'a t -> 'a -> 'a constructor

end

31

let rec show: type t. t:t ttype -> t -> unit = fun ~t x ->
match xtype_of_ttype t with
| Sum sum ->

let Constructor c = Sum.constructor sum x in
print_string (Constructor.name c);
print_char ' ';
show ~t:(Constructor.ttype c) (Constructor.project_exn c x)

| ...

32

Thanks! Interested?
https://www.lexifi.com/careers

	Compiler Quickstart
	(Toy) Runtime Types
	Break
	TODO
	A safe API
	Thanks! Interested? https://www.lexifi.com/careers

